首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertical migration of infective juveniles of Neoaplectana glaseri applied to the soil surface or introduced 16 cm below the soil surface was studied in pure silica sand, coarse sandy loam, silty clay loam, and clay. The number of juveniles that migrated and infected wax moth pupae placed in the soil decreased as the proportion of clay and silt increased. The majority of nematodes moved downwards 2-6 cm from the surface, but some penetrated to a depth of 14 cm in pure silica sand and coarse sandy loam. In pure silica sand and coarse sandy loam, nematodes introduced 16 cm below the soil surface were able to infect wax moth pupae located at depths of 0-4 cm and 28-32 cm. Nematodes showed a greater tendency to disperse downwards from the point of application. Movement of the nematode was least in clay soil and limited in silty clay loam soil. The number of migrating nematodes was greatest when wax moth pupae were present.  相似文献   

2.
The vertical migration of N. carpocapsae infective juveniles applied to the soil surface or introduced 14 cm below the soil surface was studied in four different soil types (pure silica sand, coarse sandy loam, silty clay loam, and clay). The percentage of juveniles able to migrate and infect wax moth pupae placed in the soil decreased as the percentage of clay and silt increased. Most nematodes placed on the soil surface remained within 2 cm of the surface, but some penetrated to a depth of 10 cm in pure silica sand and coarse sandy loam to infect pupae. Some pupae at the same depth were also infected with nematodes in silty clay loam soil. In pure silica sand and coarse sandy loam, nematodes introduced 14 cm below the soil surface were able to infect wax moth pupae located between 4 and 24 cm. Movement was least in clay soil and limited in silty clay loam. Nematodes showed a tendency to disperse upwards from the point of application. In all cases the number of migrating nematodes was greatest when wax moth pupae were present.  相似文献   

3.
Steinernema scapterisci was more pathogenic to insects tested in the order Orthoptera than to those in the orders Lepidoptera or Hymenoptera; it was not pathogenic to earthworms. The nematode also infected and killed the mole crickets Scapteriscus acletus and S. vicinus when released four successive times at 10-day intervals in containers of soil infested with the nematode.  相似文献   

4.
Three field experiments were established in a loamy sand soil in the Coastal Plain of North Carolina to determine downward movement of aldicarb and fenamiphos with a nematode bioassay. Penetration of bioassay plant roots by Meloidogyne incognita was measured at 1, 3, 7, 14, 21, and 28 days after treatment in the greenhouse as a means of determining nematicide effectiveness. Chemical movement was similar in planted and fallow soil. Nematicidal activity was greater in soil collected from the 0 to 10 cm depth than from the 10 to 20 cm depth. Fenamiphos suppressed host penetration by the nematode more than aldicarb under the high rainfall (19 cm) and low soil temperatures that occurred soon after application in the spring. During the summer, which had 13 cm precipitation and warmer soil temperatures, both chemicals performed equally well at the 0 to 10 cm depth. At the lower soil level (10 to 20 cm), aldicarb limited nematode penetration of host roots more quickly than fenamiphos. Both of these chemicals moved readily in the sandy soil in concentrations sufficient to control M. incognita. Although some variability was encountered in similar experiments, nematodes such as M. incognita have considerable potential as biomonitors of nematicide movement in soil.  相似文献   

5.
The effect of soil moisture on the distribution of Steinernema riobrave in a sand column was determined. Larvae of Pectinophora gossypiella were used to detect S. riobrave infective juveniles (IJ) in each 2.5-cm section of 30-cm-long soil columns. Soil moisture was determined for each section and related to the numbers of nematodes recovered from infected insect baits. Infective juveniles of S. riobrave applied on the sand column surface showed some degree of positive geotaxis. IJ in soil columns with a consistent moisture gradient grouped in the upper 12.7 cm within a water potential range of ¯40 to ¯0.0055 MPa (2% to 14% moisture). Nematodes in sand columns that were gradually dehydrating moved down the soil column, aggregating on the 28th day between 15-23 cm in depth. Nematode redistribution over time allowed IJ to remain within a water potential range of ¯0.1 to ¯0.012 MPa (5.2% to 9.5% moisture).  相似文献   

6.
Endospores of Pasteuria penetrans were evaluated for their vertical distribution in field soil and their downward movement through soil in the laboratory. In the field trial, the number of endospores attached to second-stage juveniles (J2) of Meloidogyne arenaria race 1 varied greatly in different soil depths. There were higher percentages of J2 with endospores attached in former weed fallow plots during the first 3 years of growing peanut than in former bahiagrass and rhizomal peanut plots (P ≤ 0.05). In weed fallow plots a higher average number of endospores per J2 were maintained in all depths, upper three depths, and upper four depths in 1999, 2000, and 2001, respectively (P ≤ 0.05). However, in 2002, there were no differences in the percentages of J2 with endospores attached and in the average of the numbers of endospores per J2 among the treatments (P > 0.05). In laboratory trials, P. penetrans endospores were observed to move throughout the soil through the percolation of water. After one application of water, some endospores were detected 25 to 37.5 cm deep. Endospores were present at the greatest depth, 37.5 to 50 cm, after the third application of water. These results indicate that rain or water applications by irrigation are likely to move endospores to deeper levels of the soil, but the majority of endospores remain in the upper 0-to-30-cm depth.  相似文献   

7.
Responses of egg masses, free eggs, and second-stage juveniles (J2) ofMeloidogyne hapla and M. chitwoodi to ethoprop were evaluated. The results indicated that J2 were the most sensitive, followed by free eggs and egg masses. In general, M. chitwoodi was more susceptible to ethoprop than M. hapla. Ethoprop at 7.2 μg a.i./g soil protected tomato roots from upward migrating M. chitwoodi for 5 weeks. The zone of protection was extended to 10 and 20 cm below the root zone when 3.6 and 7.2 cm water were applied over 8 days. Ethoprop at 1.8, 3.6, and 7.2 μg a.i./g soil degraded faster and killed fewer M. chitwoodi J2 in potato field soil previously exposed to ethoprop than in unexposed soil or sterilized exposed soil. The enhanced biodegradation property of the exposed soil lasted 17 months after the last application of ethoprop. The limited downward movement of ethoprop in the soil, migration of M. chitwoodi J2 into the treated zone, presence of resistant life stage(s) at the time of application, and loss of efficacy due to enhanced biodegradation may have a significant effect on the performance of ethoprop.  相似文献   

8.
Temperature gradient fluctuations that occur naturally as a result of heating and cooling of the soil surface were reproduced within 15-cm-d, 15-cm-long acrylic tubes filled with moist sand. Sunny and rainy periods during the late summer in eastern Texas were simulated. Five ecologically different nematode species were adapted to fluctuating temperatures for 20-36 hours at a simulated depth of 12.5 cm before being injected simultaneously into the centers of tubes at that depth. When heat waves were propagated horizontally to eliminate gravitational effects, the movement of Ditylenchus phyllobius, Steinernema glaseri, and Heterorhabditis bacteriophora relative to the thermal surface was rapid and largely random. However, Rotylenchulus reniformis moved away from and Meloidogyne incognita moved toward the thermal surface. When heat waves were propagated upward or downward, responses to temperature were the same as when propagated horizontally, irrespective of gravity. The initial direction of movement 1.5 hours after introduction to 20-era-long tubes at five depths at five intervals within a 24-hour cycle indicated that M. incognita moved away from and R. reniformis moved toward the temperature to which last exposed. Differences in movement of the five species tested relative to gravity appeared related to body length, with the smallest nematodes moving downward and the largest moving upward.  相似文献   

9.
The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm³ soil to the soil surface of each pot, 50 infective juveniles/cm² soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P ≤ 0.05) in the presence of either S. riobrave or H. bacteriophora 180 days following ring nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm² were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave.  相似文献   

10.
The knapweed nematode, Subanguina picridis, forms galls on the leaves, stems, and root collar of Russian knapweed, Acroptilon repens. After being revived from a dormant, cryptobiotic state, second-stage juveniles required at least 1 month in a free-living state before becoming infective. Galls were induced on relatively slow-growing host plants that retained their apical meristems at or near the soil surface for 2-5 weeks. Galls developed extensive areas of nutritive tissue. The nematode was introduced from the Soviet Union and released in Canada for the biological control of Russian knapweed.  相似文献   

11.
Methods are described for standardized in vivo production, rapid harvest, and storage, in a concentrated form, of infective juveniles of the entomopathogenic nematode, Steinernema carpocapsae Mexican strain Kapow selection. Nematodes were stored in nematode wool configurations, consisting of mats of intertwined infective juveniles. Freshly harvested nematodes are readily available in adequate quantities for laboratory and small-scale field evaluations as well as cottage industry production.  相似文献   

12.
《Biological Control》2010,55(3):166-171
Sancassania polyphyllae (Acari: Acaridae) is associated with larvae of the white grub, Polyphylla fullo (Coleoptera: Scarabaeidae), and will feed on the infective juveniles of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae which are important biological control agents of soil insect pests. We conducted laboratory studies to determine the potential negative effects this mite species might have on biological control of soil insect pests. Our objectives in this study were to (1) determine the response of S. polyphyllae adult mites to a nematode-killed insects on agar, (2) evaluate the predation by mites on Steinernema feltiae infective juveniles from nematode-killed insects on agar and in soil, and (3) assess predation efficiency of the mite on the infective juveniles in the soil. On agar, we found (1) significantly more adult female mites near or on a nematode-killed Ceratitis capitata (Diptera: Tephritidae) larva than near or on the freeze-killed larva or a bamboo mimic suggesting that a chemical or an odor from the nematode-killed larva attracted the mites, and (2) 10 mites consumed 96% of infective juveniles that emerged from an insect cadaver. In soil with a nematode-killed insect, the average number of infective juveniles recovered was <30 when mites were present, whereas the average number of infective juveniles recovered was >375 when the mites were absent. When the infective juveniles alone were placed in different depths in relation to the mites in the soil column for 4 and 10 days, S. polyphyllae was not as efficient at finding the infective juveniles when they were separated from each other in the soil lending support to the idea that the mites were cueing in on the cadaver as a food resource. Our data suggest that emerging infective juveniles from an insect cadaver in the soil in the presence of S. polyphyllae can adversely affect biological control because of nematode consumption by the mites.  相似文献   

13.
Soil solarization was evaluated for control of Rotylenchulus reniformis in the lower Rio Grande Valley of Texas. In field experiments, solarization significantly reduced soil nematode population densities 0-15 cm deep and increased yields of lettuce and cowpea. The length of time required for 90% mortality of nematodes in soil heated under controlled conditions in the laboratory varied from 25 hours to less than 1 hour between 41 and 47 C. Daily exposures of nematode-infested soil to lethal temperatures for sublethal time periods had a cumulative lethal effect. In water, vermiform stages required up to 10 days to recover from sublethal thermal stress. Eggs were similar to juveniles in their sensitivity to high temperatures. Lethal time-temperatures under controlled conditions were in general agreement with field results.  相似文献   

14.
Eggs and (or) second-stage juveniles (J2) inside cysts of Heterodera zeae survived over winter in the field with no detectable mortality at all six depths to 30 cm from which soil samples were collected between corn stubble in the row at 4-8-week intervals. Few or no free J2 were recovered from soil collected in January-April from the top 5 cm, but some were recovered at all samplings from soil collected at greater depths. Emergence of J2 from cysts and numbers of females developing on corn roots in bioassays of cysts increased substantially between January and April. Cyst numbers in a fallow area of the corn field did not decline at any depth to 30 cm during 20 months. Free soil J2, J2 emerged from cysts, and females from the bioassay of cysts were highest at the first soil sampling in July after 10 months of fallow; numbers of nematodes in all three categories declined thereafter, but a few were still detectable after 20 months of fallow. Some cysts were still being recovered after 51 months from naturally infested field soil stored moist in the laboratory at 2 C and 24 C. Females were produced in the bioassays of cysts recovered from soil stored for 38 months at 24 C and for 32 months at 2 C. No free J2 were recovered from soil after 1 month of storage at -18 C, but even after 7 months storage J2 emerged from cysts that were recovered and many females developed in bioassays of those cysts.  相似文献   

15.
Seasonal vertical migration of Meloidogyne chitwoodi through soil and its impact on potato production in Washington and Oregon was studied. Nematode eggs and second-stage juveniles (J2) were placed at various depths (0-180 cm) in tubes filled with soil and buried vertically or in holes dug in potato fields. Tubes were removed at intervals over a 12-month period and soil was bioassayed on tomato roots. Upward migration began in the spring after water had percolated through the tubes. Nematodes were detected in the top 5 cm of tubes within 1-2 months of burial, depending on depth of placement. Potatoes were grown in field plots for 4 or 5 months before the tubers were evaluated for infection. One hundred eggs and J2 per gram soil placed at 60 and 90 cm caused significant tuber damage at the Washington and Oregon sites, respectively. At the Washington site, inoculum placed at 90, 120, and 150 cm caused potato root infection without serious impact on tuber quality, but inoculum diluted 2-8 times and placed at 90 cm did not cause root or tuber infection. Nematode migration was dependent on soil texture; 9 days after placement at the bottoms of tubes, J2 had moved up 55 cm in sandy loam soil (Oregon) but only 15 cm in silt loam (Washington). Thus, the importance of M. chitwoodi which occur deep in a soil profile may depend on soil texture, population density, and length of the growing season.  相似文献   

16.
Steinernema scapterisci Nguyen & Smart (Rhabditida: Steinernematidae) was established in Florida in 1985 for the control of mole crickets, Scapteriscus spp. Infected hosts were collected in sound traps 23 km from the nearest release, indicating long-distance dispersal and area-wide establishment. In a subsequent pasture study, the nematode dispersed, on average, 60 m in 20 months; dispersal in some pastures was 150 m in 1 year. Establishment was not as successful on golf-courses; however, pest populations were reduced 27% in areas where the nematode persisted. Inoculative applications were successful at 10 of 29 sites in Florida, where sound traps attracted flying Scapteriscus to relatively small numbers of S. scapterisci infective juveniles. The differences in the susceptibility to the nematode for mole cricket life stages and species were determined in laboratory and field trials. The nematode became commercially available in 1993; commercial applications facilitate the establishment of S. scapterisci in many areas of the state.  相似文献   

17.
The nematode Steinernema carpocapsae (All) strain was significantly more effective against peachtree borer larvae (Synanthedon exitiosa [Lepidoptera: Sesiidae]) than Steinernema riobrave (7-12) strain in field and laboratory experiments. Eighty-eight percent control of peachtree borer larvae was obtained with S. carpocapsae in the field trial when applied at 3 x 10(5) infective juveniles per tree, and 92% mortality was obtained in the lab assay using 50 infective juveniles per larva.  相似文献   

18.
Newly hatched infective juveniles of the plant-parasitic nematode Meloidogyne incognita have recently been found to migrate in very shallow thermal gradients to a preferred temperature that is several °C above the temperature to which they were acclimated. Possible functions of this unusual behavior were explored by computer modeling of the movement of such nematodes in the dynamic thermal environment typical of soil. Reliable estimates were available for all the required parameters. The model predicts that, as the diurnal temperature fluctuations at the surface penetrate into the soil, a nematode located below the surface will move upward during part of the day and downward during the rest of the day. However, the distances moved upward and downward do not balance and there is a net change in depth over a period of days. The net change is upward or downward depending on the physiological parameters of the nematode and its depth. Using the best estimates available for the parameters, it is predicted that nematodes starting at any depth between 0 and 15 cm would move toward an intermediate depth of about 5 cm. It is hypothesized that, in the absence of chemical cues, this response leads the nematodes toward a level that is optimal for locating the roots of host plants. This suggests that simple organisms may make use of much more complex stimulus patterns than was previously realized.  相似文献   

19.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.  相似文献   

20.
Two soil extraction methods were compared to determine their efficiency in recovering cysts and juveniles of a tobacco cyst nematode, Globodera tabacum solanacearum. The methods were equally efficient when extracting nematodes from soil samples seeded in the laboratory; however, there was a significant extraction method × month interaction when the methods were used to estimate field soil populations over 2 years. The centrifugal sugar flotation method recovered greater numbers of cysts when densities were near 400 cysts/100 cm³ soil and greater numbers of juveniles in all samples. The sugar flotation method recovered greater numbers of cysts during months when densities were less than 400 cysts/100 cm³ soil. Numbers of cysts and juveniles were lowest in June and July following land tillage in May. A soil freeze in January 1982 may have been responsible for unusually high numbers of recovered cysts in February and March 1982, a pattern that did not occur in 1983.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号