首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Twenty fungi were assayed in vitro for antagonism to eggs of Heterodera glycines. Eight of the fungi were isolated from cysts or eggs of H. glycines during the current study, one was isolated from Panagrellus redivivus, and eleven were obtained from other researchers or collections. The bioassays were conducted on eggs from nematodes that had been grown monoxenically on excised root tips. Phoma chrysanthemicola, one strain of Verticillium chlamydosporium, and one strain of V. lecanii caused a decrease (P < 0.01, P < 0.05, P < 0.05, respectively) in the number of viable eggs, although no hyphae were observed colonizing live eggs. Trichoderma polysporum infected live eggs but enhanced (P < 0.05) egg survival. Acremonium bacillisporum, Chaetomium sp., Drechmeria coniospora (two strains), Epicoccum sp., Exophiala jeanselmei, Fusarium sp., Neocosmospora vasinfecta, Scytalidium fulvum, Trichoderma harzianum (two strains), V. chlamydosporium (one strain), V. lecanii (three strains), and an unidentified fungus did not measurably affect egg viability, even though hyphae of five of these fungi were seen in live eggs. The bioassay provides a useful step in the selection of a biological control agent for this major nematode pest.  相似文献   

2.
Hyphae of Dactylella oviparasitica proliferated rapidly through MeIoidogyne egg masses, and appressoria formed when they contacted eggs. The fungus probably penetrated egg shells mechanically, although chitinase production detected in culture suggested that enzymatic penetration was also possible. In soil, D. oviparasitica invaded egg masses soon after they were deposited on the root surface and eventually parasitized most of the first eggs laid. Occasionally the fungus grew into Meloidogyne females, halting egg production prematurely. The fungus parasitized eggs in the gelatinous matrix or eggs freed from the matrix and placed on agar or in soil. Specificity in nematode egg parasitism was not displayed, for D. oviparasitica parasitized eggs of four Meloidogyne spp., Acrobeloides sp., Heterodera schachtii, and Tylenchulus semipenetrans. In tests in a growth chamber, parasitism by D. oviparasitica suppressed galling on M. incognita-infected tomato plants.  相似文献   

3.
Fungal colonization was determined for females and cysts of Heterodera glycines on soybean roots or in rhizosphere soil from a Florida soybean field. A total of 1,620 females and cysts were examined in 1991, and 1,303 were examined in 1992. More than 35 species of fungi were isolated from females and cysts. The frequency of fungi colonizing white and yellow females was low, but a high frequency of fungi was encountered in brown cysts, which increased with time of exposure of the cysts to the soil. No single fungal species predominated in the nematode females or cysts in this field. Rarely was a female or cyst colonized by more than one fungus. The common fungi isolated from the females and cysts were Neocosmospora vasinfecta, Fusarium solani, Fusarium oxysporum, Dictyochaeta coffeae, Dictyochaeta heteroderae, Pyrenochaeta terrestris, Exophiala pisciphila, Gliocladium catenulatum, Stagonospora heteroderae, and a black yeast-like fungus. The communities of common fungal species isolated from cysts in several regions in the southeastern United States appear to be similar.  相似文献   

4.
A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species.  相似文献   

5.
Calonectria crotalariae enhanced root penetration of Lee 74 (susceptible) and Centennial (resistant) soybeans by juveniles of race 3 of Heterodera glycines. Numbers of cysts in and on the roots of Lee 74 increased during the first 30 days in the presence of the fungus. Percentage of root infection by the fungus increased at 40 days in Lee 74 in the presence of the nematode. Numbers of cysts in soil at 80 and 120 days after inoculation with both organisms accounted for the significantly increased nematode population levels on Lee 74. In the presence of the fungus on the resistant cultivar, significantly increased levels of cysts were recovered from soil at 120 days. Fungus infection of Centennial roots also infected with the nematode increased from 58 to 86% at 120 days. An inoculum timing study in which Lee 74 was infested with the nematode and fungus individually, sequentially, and in combination at days 0 and 35 indicated that enhanced nematode reproduction was related more to early plant-fungus than to early plant-fungus-nematode interaction(s).  相似文献   

6.
The objective of this study was to determine the effect of egg age and pre-colonization of cysts by a saprophytic or parasitic fungus on parasitism of Heterodera glycines eggs by other parasitic fungi. In agar and in soil tests, fungi generally parasitized more eggs in early developmental stages than eggs containing a juvenile. The effect of pre-colonization of cysts by a fungus on parasitism of eggs by other fungi depended on the fungi involved. In most cases, pre-colonization of cysts by an unidentified, saprophytic fungal isolate (A-1-24) did not affect parasitism of eggs in the cysts subsequently treated with other fungi. However, pre-colonization of cysts by A-1-24 reduced fungal parasitism of eggs in cysts subsequently treated with Cylindrocarpon destructans isolate 3. In agar tests, pre-colonization of cysts by Chaetomium cochliodes, a saprophytic or weakly parasitic fungus, reduced parasitism of eggs in cysts subsequently treated with Verticillium chlamydosporium Florida isolate, Fusarium oxysporum, Fusarium solani, ARF18, and another sterile fungus. However, in soil tests, pre-colonization of cysts by C. cochliodes had no effect on parasitism of eggs by subsequent fungal parasites. In another test, parasitism of eggs by V. chlamydosporium in cysts was not affected by pre-colonizing fungi C. destructans, F. oxysporum, and F. solani but was reduced by Mortierella sp., Pyrenochaeta terrestris, and C. cochliodes. Parasitism of eggs in cysts by ARF18 was reduced by pre-colonizing fungi C. destructans, F. oxysporum, F. solani, P. terrestris, and C. cochliodes but not Mortierella sp.  相似文献   

7.
Abstract Fungal egg parasites isolated from eggs of the cyst nematode Heterodera avenae in Sweden were investigated with respect to their ability to infect cyst nematode eggs of H. schachtii in vitro. The infection was studied by interference phase contrast microscopy of whole cysts and of cryosections of cysts exposed to the fungi on agar plates.
Verticillium suchlasporium was the most effective parasite, infecting 53% of the nematode eggs, while V. chlamydosporium infected 12% of the eggs. The fungi Paecilomyces lilacinus, Cylindrocarpon destructans or Fusarium oxysporum did not parasitize nematode eggs; nor did Arthrobotrys oligospora , a nematode trapping fungus nor Penicillium viridicatum which served as a control fungus.
The ability of the fungi to infect eggs was correlated with their lytic enzyme activity. Fungi that readily infected eggs also showed chitinase activity and presence of proteolytic activity. The Verticillium species had an activity between 3.7 and 14.6 μmol N -acetyl-glucosamine per mg protein per hour (CU) while it was 4.5 CU or lower for P. lilacinus . Other isolates did not shown any chitinase activity.  相似文献   

8.
The effects of culture filtrates of Rhizoctonia solani and root exudates of R. solani-infected cotton (Gossypium hirsutum) seedlings on hatching of eggs and infectivity of females of Rotylenchulus reniformis were evaluated in an attempt to account for the enhanced nematode reproduction observed in the presence of this fungus. Crude filtrates of R. solani cultures growing over sterile, deionized distilled water did not affect egg hatching. Exudates from roots of cotton seedlings increased hatching of R. reniformis eggs over that observed in water controls. Exudates from cotton seedling roots not infected or infected with R. solani did not differ in their effect on egg hatching. However, infection of cotton seedlings by reniform females was increased in the presence of R. solani, resulting in the augmented egg production and juvenile population densities in soil observed in greenhouse studies.  相似文献   

9.
The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol of nematodes.  相似文献   

10.
The occurrence ofchlamydospores of Glomus fasciculatum (Gf) within cysts of the soybean cyst nematode, Heterodera glycines, and the effects of vesicular-arbuscular mycorrhizae on nematode population dynamics and soybean (Glycine max) plant growth were investigated. Chlamydospores occupied 1-24% of cysts recovered from field soil samples. Hyphae of Missouri isolate Gfl penetrated the female nematode cuticle shortly after she ruptured the root epidermis. Convoluted hyphae filled infected eggs, and sporogenesis occurred within infected eggs. G. microcarpum, G. mosseae, and two isolates of Gf were inoculated with H. glycines on plants of ''Essex'' soybeans. Each of the two Gf isolates infected about 1% of the nematode eggs in experimental pot cuhures. The Gfl isolate decreased the number of first-generation adult females 26%, compared with the nonmycorrhizal control. The total numbers of first-generation plus second-generation adult females were similar for both Gf isolates and 29-41% greater than the nonmycorrhizal control. Soybean plants with Gf and H. glycines produced more biomass than did nonmycorrhizal plants with nematodes, but only Gfl delayed leaf senescence.  相似文献   

11.
Filtrates from nematode-parasitic fungi have been reported to be toxic to plant-parasitic nematodes. Our objective was to determine the effects of fungal filtrates on second-stage juveniles and eggs of Heterodera glycines. Eleven fungal species that were isolated from cysts extracted from a soybean field in Florida were tested on J2, and five species were tested on eggs in vitro. Each fungal species was grown in Czapek-Dox broth and malt extract broth. No toxic activity was observed for fungi grown in Czapek-Dox broth. Filtrates from Paecilomyces lilacinus, Stagonospora heteroderae, Neocosmospora vasinfecta, and Fusarium solani grown in malt extract broth were toxic to J2, whereas filtrates from Exophiala pisciphila, Fusarium oxysporum, Gliocladium catenulatum, Pyrenochaeta terrestris, Verticillium chlamydosporium, and sterile fungi 1 and 2 were not toxic to J2. Filtrates of P. lilacinus, S. heteroderae, and N. vasinfecta grown in malt extract broth reduced egg viability, whereas F. oxysporum and P. terrestris filtrates had no effect on egg viability.  相似文献   

12.
In previous greenhouse and laboratory studies, citrus seedlings infested with the citrus nematode Tylenchulus semipenetrans and later inoculated with the fungus Phylophthora nicotianae grew larger and contained less fungal protein in root tissues than plants infected by only the fungus, demonstrating antagonism of the nematode to the fungus. In this study, we determined whether eggs of the citrus nematode T. semipenetrans and root-knot nematode Meloidogyne arenaria affected mycelial growth of P. nicotianae and Fusarium solani in vitro. Approximately 35,000 live or heat-killed (60°C, 10 minutes) eggs of each nematode species were surface-sterilized with cupric sulfate, mercuric chloride, and streptomycin sulfate and placed in 5-pl drops onto the center of nutrient agar plates. Nutrient agar plugs from actively growing colonies of P. nicotianae or F. solani were placed on top of the eggs for 48 hours after which fungal colony growth was determined. Live citrus nematode eggs suppressed mycelial growth of P. nicotianae and F. solani (P ≤ 0.05) compared to heat-killed eggs and water controls. Reaction of the fungi to heat-killed eggs was variable. Root-knot nematode eggs had no effect on either P. nicotianae or F. solani mycelial growth. The experiment demonstrated a species-specific, direct effect of the eggs of the citrus nematode on P, nicotianae and F. solani.  相似文献   

13.
Extracts from the plants Plantago lanceolata and P. rugelii were evaluated for toxicity to the root-knot nematode Meloidogyne incognita, the beneficial microbes Enterobacter cloacae, Pseudomonas fluorescens and Trichoderma virens, and the plant-pathogenic fungi Fusarium oxysporum f. sp. gladioli, Phytophthora capsici, Pythium ultimum, and Rhizoctonia solani. Wild plants were collected, roots were excised from shoots, and the plant parts were dried and ground to a powder. One set of extracts (10% w/v) was prepared in water and another in methanol. Treatments included extract concentrations of 25%, 50%, 75% and 100%, and water controls. Meloidogyne incognita egg hatch was recorded after 7-day exposure to the treatments, and second-stage juvenile (J2) activity after 48 hours. All extracts were toxic to eggs and J2, with P. lanceolata shoot extract tending to have the most activity against M. incognita. Numbers of active J2 remained the same or decreased in a 24-hour water rinse following the 48-hour extract treatment, indicating that the extracts were lethal. When data from water- and methanol-extracted roots and shoots of both plant species were combined for analysis, J2 tended to be more sensitive than eggs to the toxic compounds at lower concentrations, while the higher concentrations (75% and 100%) were equally toxic to both life stages. The effective concentrations causing 50% reduction (EC50) in egg hatch and in J2 viability were 44.4% and 43.7%, respectively. No extract was toxic to any of the bacteria or fungi in our assays.  相似文献   

14.
Soils from 320 sites representing diverse undisturbed habitats from five Hawaiian Islands were assessed for occurrence of Pasteuria-like organisms. Mean annual rainfall at sites ranged from 125-350 cm, elevation from 69-2,286 m, and annual mean temperature from 12-24 C. Seven different natural communities were represented: wet lowland, mesic lowland, wet montane, mesk montane, dry montane, mesic subalpine, and dry alpine. Pasteuria spp. in a soil sample was detected by baiting with infective stages of Helicotylenchus dihystera, Meloidogyne javanica, Pratylenchus brachyurus, and Rotylenchulus reniformis, followed by cultivation of the nematodes on pineapple plants for 10-11 months. All nematode baits except R. reniformis were readily recovered from the soil samples. A sample was considered Pasteuria-positive if at least 5 % of the nematode specimens showed endospore attachment. Thirteen percent of all samples were positive for Pasteuria-like organisms. The frequencies of association between Pasteuria spp. and Meloidogyne, Helicotylenchus, or Pratylenchus species were 52%, 24%, and 24%, respectively. Positive samples were more prevalent on the older islands of Kauai and Oahu (75%), in lowland communities (61%), and in areas with introduced vegetation (60%). More than 27% of the positive samples were associated with plant species in a few selected families that included Meliaceae and Myrtaceae. Occurrence of Pasteuria spp. seemed to be positively associated with mean annual rainfall or temperature, but negatively associated with elevation.  相似文献   

15.
A wild type strain ofVerticillium lecanii and a mutant strain with increased tolerance to the fungicide benomyl were evaluated in greenhouse experiments for effects on Heterodera glycines populations. Nematodes were applied at 300 eggs and juveniles per 4,550-cm³ pot (two soybean plants in 4,990 g loamy sand per pot) and at both 300 and 10,000 eggs and juveniles per 1,720-cm³ pot (one soybean plant in 2,060 g sand per pot). With 300 nematodes added per pot, both V. lecanii strains significantly reduced nematode populations in loamy sand (fungus applied at 0.02% dry weight per dry weight loamy sand) and sand (0.006% and 0.06% fungus application rates). The mutant strain applied at 0.002% to sand also significantly reduced cyst numbers. When 10,000 nematodes were added per pot, only the mutant strain at 0.06% significantly decreased population. Various media were tested for isolation of the fungus strains from prills, loamy sand, and sand, but the fungi were recovered from few of the greenhouse pots.  相似文献   

16.
Penetration of cabbage roots by Heterodera schachtii was suppressed 50-77% in loamy sand naturally infested with the nematophagous fungus Hirsutella rhossiliensis. When Heterodera schachtii was incubated in the suppressive soil without plants for 2 days, 40-63% of the juveniles had Hirsutella rhossiliensis spores adhering to their cuticles. Of those with spores, 82-92% were infected. Infected nematodes were killed and filled with hyphae within 2-3 days. Addition of KCl to soil did not increase infection of Heterodera schachtii by Hirsutella rhossiliensis. The percentage of infection was lower when nematodes were touched to two spores and incubated in KCl solution than when nematodes naturally acquired two spores in soil.  相似文献   

17.
Free and esterified sterols of eggs of the root-knot nematodes Meloidogyne incognita races 2 and 3 and M. arenaria race 1 were isolated and identified by gas-liquid chromatography-mass spectrometry. The major sterols of eggs of each race were 24-ethylcholesterol (33.4-38.8% of total sterol), 24-ethylcholestanol (18.3-25.3%), 24-methylcholesterol (8.6-11.7%), 24-methylcholestanol (7.7-12.5%), and cholesterol (4.6-11.6%). Consequently, the major metabolic transformation performed by Meloidogyne females or eggs upon host sterols appeared to be saturation of the sterol nucleus. The free and esterified sterols of the same race did not differ appreciably, except for a slight enrichment of the steryl esters in cholesterol. Although the sterol composition of Meloidogyne eggs differed from that of other life stages of other genera of plant-parasitic nematodes, the three Meloidogyne races could not be distinguished from each other by their egg sterols. Ecdysteroids, compounds with hormonal function in insects, were not detected by radioimmunoassay in the Meloidogyne eggs either as free ecdysteroids or as polar conjugates.  相似文献   

18.
Hirsutella rhossiliensis and Verticillium chlamydosporium infected second-stage juveniles (J2) and eggs of Meloidogyne hapla, respectively, in petri dishes and in organic soil in pots planted to lettuce in the greenhouse. In vitro, H. rhossiliensis produced 78 to 124 spores/infected J2 of M. hapla. The number of J2 in roots of lettuce seedlings decreased exponentially with increasing numbers of vegetative colonies of H. rhossiliensis in the soil. At an infestation of 8 M. hapla eggs/cm³ soil, 1.9 colonies of H. rhossiliensis/cm³ soil were needed for a 50% decrease in J2 penetration of lettuce roots. Egg-mass colonization with V. chlamydosporium varied from 16% to 43% when soil was infested with 8 M. hapla eggs and treated with 5,000 or 10,000 chlamydospores of V. chlamydosporium/cm³ soil. This treatment resulted in fewer J2 entering roots of bioassay lettuce seedlings planted in the infested soils after harvesting the first lettuce plants 7 weeks after infestation with M. hapla. Hirsutella rhossiliensis (0 to 4.3 colonies/cm3 soil), V. chlamydosporium (500 to 10,000 chlamydospores/cm3 soil), or their combination, added to organic soils with 8 M. hapla eggs/cm³ soil, generally did not affect lettuce weight, root galling, or egg production of M. hapla. However, when lettuce was replanted in a mix of infested and uninfested soil (1:3 and 1:7, v:v), egg production was lower in soils with V. chlamydosporium than in soils without the fungus. Both fungi have potential to reduce the M. hapla population, but at densities below 8 eggs/cm³ soil.  相似文献   

19.
Evolutionary theory of plant defences against herbivores predicts a trade-off between direct (anti-herbivore traits) and indirect defences (attraction of carnivores) when carnivore fitness is reduced. Such a trade-off is expected in plant species that kill herbivore eggs by exhibiting a hypersensitive response (HR)-like necrosis, which should then negatively affect carnivores. We used the black mustard (Brassica nigra) to investigate how this potentially lethal direct trait affects preferences and/or performances of specialist cabbage white butterflies (Pieris spp.), and their natural enemies, tiny egg parasitoid wasps (Trichogramma spp.). Both within and between black mustard populations, we observed variation in the expression of Pieris egg-induced HR. Butterfly eggs on plants with HR-like necrosis suffered lower hatching rates and higher parasitism than eggs that did not induce the trait. In addition, Trichogramma wasps were attracted to volatiles of egg-induced plants that also expressed HR, and this attraction depended on the Trichogramma strain used. Consequently, HR did not have a negative effect on egg parasitoid survival. We conclude that even within a system where plants deploy lethal direct defences, such defences may still act with indirect defences in a synergistic manner to reduce herbivore pressure.  相似文献   

20.
The efficacy of fallow and coastal bermudagrass (Cynodon dactylon) as a rotation crop for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus cv. Emerald), squash (Cucurbita pepo cv. Dixie Hybrid), and sweet corn (Zea mays cv. Merit) was evaluated in a 3-year field trial. Numbers of M. incognita in the soil and root-gall indices were greater on okra and squash than sweet corn and declined over the years on vegetable crops following fallow and coastal bermudagrass sod. Fusarium oxysporum and Pythium spp. were isolated most frequently from soil and dying okra plants. Numbers of colony-forming units of soilborne fungi generally declined as the number of years in sod increased, but were not affected by coastal bermudagrass sod. Yields of okra following 2-year and 3-year sod and squash following 2-year sod were greater than those following fallow. Yield of sweet corn was not different following fallow and coastal bermudagrass sod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号