首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
Transmission of pinewood nematode through Monochamus carolinensis oviposition wounds was documented. Nematode transmission was measured as the average number of nematodes isolated per oviposition wound excavated and also as the percentage of oviposition wounds from which nematodes were isolated. The influence of three factors that might affect nematode transmission was investigated: age of the beetle vector, number of nematodes carried per beetle, and egg deposition in the oviposition wound. Only the number of nematodes carried by the beetle was found to have a significant effect on transmission. Nematodes were transmitted more frequently and in slightly greater numbers by beetles carrying more nematodes. The influence of pinewood on nematode exit from beetles were investigated by comparing nematode exit from beetles placed over pine chips with those placed over distilled water. Nematodes exited in greater numbers and at a higher frequency from beetles over pine chips than from beetles over distilled water. Apparently, the nematodes are able to detect a factor from the pine chips that promotes their exit from the beetles.  相似文献   

2.
Four experiments were conducted using nematode-infested and nematode-free adults of the cerambycid beetle, Monochamus alternatus, to determine horizontal transmission pathways of Bursaphelenchus xylophilus. When nematode-infested beetles of one sex and nematode-free beetles of the opposite sex were paired in containers for 48 or 72 hours, the number of nematodes carried by nematode-free beetles tended to increase with increased number of nematodes carried by nematode-infested beetles. The nematodes acquired by "nematode-free" beetles could be transmitted to pine. A female beetle that received 13 nematodes from a male transmitted one nematode to a Pinus densiflora bolt via an oviposition wound. When the nematode-infested and nematode-free beetles were observed continuously, it was observed that the number of nematodes carried by nematode-free beetles at the end of the first sexual mounting increased as the number of nematodes carried by nematode-infested beetles just before mounting increased. The number of nematodes transferred to nematode-free beetles was positively related to duration time of mounting. There was no difference in transmission efficacy between male-to-female transmission and female-to-male transmission. The horizontal transmission pathways are discussed relative to the persistence of B. xylophilus in resistant pine forests and the control of pine wilt disease.  相似文献   

3.
Field-collected adults of the southern pine sawyer, Monochamus titillator (F.) (Coleoptera: Cerambycidae), naturally infested with fourth-stage juveniles (dauerlarvae) of the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, 1934) Nickle, 1970, were maturation fed on excised shoots of typical slash pine, Pinus elliottii Engelm. var elliottii, for 21 days. During August 1981, a male and female adult beetle were held in a sleeve cage placed on the terminal of a side branch of each of seven replicate, healthy 10-year-old slash pine trees. All seven branch terminals showed evidence of beetle feeding on the bark after 1 week, and pinewood nematodes were present in wood samples taken near these feeding sites. Four of the seven trees showed wilt symptoms in 4-6 weeks and died about 9 weeks after beetle feeding. Pinewood nematodes were recovered from the roots and trunks of the dead trees. Each of seven replicate slash pine log bolts was enclosed in a jar with a pair of the same beetles used in the sleeve cages. After 1 week, wood underlying beetle oviposition sites in the bark of all replicate log bolts was infested with the pinewood nematode.  相似文献   

4.
The transmission of Bursaphelenchus xylophilus from Monochamus alternatus males to Pinus densiflora trees via oviposition wounds has been determined. Nematode-infested males, with mandibles fixed experimentally to prevent feeding, were placed for 48 hours with pine bolts containing oviposition wounds that had been made by nematode-free females. After removal of the nematode-infested males, the pine bolts were held for 1 month and then examined for the presence of nematodes. Reproducing nematode populations were recovered from pine bolts that were exposed to male beetles carrying a high number of nematodes. No reproducing nematode population could be recovered from pine bolts exposed to beetles with a small number of nematodes. Nematode reproduction in the pine bolts was not related to the number of oviposition wounds per bolt. Fourth-stage dispersal B. xylophilus juveniles, collected from beetle body surfaces, were inoculated on pine bolt bark 0, 5, 10, and 15 cm away from a single artificial, small hole. These dauer juveniles successfully entered some bolts. The probability of successful nematode reproduction decreased with increased distance between inoculation point and artificial hole. The results indicated that B. xylophilus can move a significant distance to oviposition wounds along the bark surface and enter a tree via the wounds. The new transmission pathway is considered important for the nematode to persist in pine forests such as in North America where pine wilt disease does not occur.  相似文献   

5.
The pinewood nematode, Bursaphelenchus xylophilus, was inoculated into established native jack and red pines (Pinus banksiana and P. resinosa) and exotic Austrian pine (P. nigra) in Minnesota and Wisconsin forests during summer 1981. The nematode isolates did not kill established nonstressed pine trees growing in the forest. However, the same nematode isolates killed pine seedlings under greenhouse conditions. Girdling the main stem of some trees to induce stress resulted in the death of the majority of inoculated and noninoculated branches of Austrian and jack pines, but no branch death was observed on red pine. Greater numbers of nematodes were extracted from branches of inoculated, girdled trees than from nongirdled trees. The mean number of nematodes extracted from branches of inoculated, nongirdled trees was 0.3 - 14 nematodes per gram of wood.  相似文献   

6.
Abstract:  Transmission of the pinewood nematode (PWN) Bursaphelenchus xylophilus (Steiner & Bührer) Nickle to Pinus pinaster Aiton branches through feeding wounds of its vector in Portugal, Monochamus galloprovincialis Olivier, was studied under laboratory conditions. All the B. xylophilus -infected beetles transmitted nematodes to branches they fed. The transmission was more frequent during the first 6 weeks after emergence, with transmission peaks during the second and the sixth week. The adult M. galloprovincialis transmitted nematodes for a mean of 5 weeks, independently of the beetle's sex or longevity. No relation was found between beetle feeding intensity and effective transmission of B. xylophilus to the branches. The nematode transmission ceased after the ninth week, even in insects which still had B. xylophilus on their bodies. The longevity of the nematode-free insects (control group) was slightly higher than the B. xylophilus -infected beetles, although with no significant difference. The results emphasize the necessity to control the immature stages of M. galloprovincialis prior to emergence and develop efficient strategies to capture and eliminate the recently emerged beetles, as majority of the nematode infection of healthy pine trees occurs during a short period of few weeks after beetle emergence.  相似文献   

7.
The development of Bursaphelenchus xylophilus in pine wood infested with and free of Monochamus carolinensis was investigated. Formation of third-stage dispersal juveniles occurred in the presence and absence of pine sawyer beetles. The proportion of third-stage dispersal juveniles in the total nematode population was negatively correlated with moisture content of the wood. Formation of nematode dauer juveniles was dependent on the presence of the pine sawyer beetle. Dauer juveniles were present in 3 of 315 wood samples taken from non-beetle-infested Scots pine bolts and 81 of 311 samples taken from beetle-infested bolts. Nematode densities were greater in wood samples taken adjacent to insect larvae, pupae, and teneral adults compared with samples taken from areas void of insect activity. Nematodes recovered from beetle larvae, pupae, and teneral adults were mostly fourth-stage dauer juveniles, although some third-stage dispersal juveniles were also recovered. Dauer juvenile density was highest on teneral adult beetles.  相似文献   

8.
Laboratory-reared Monochamus carolinensis (Olivier) were used to study the temporal pattern of pinewood nematode dauer larval exit from this beetle vector. Exit rates of dauer larvae were determined by comparing the mean number of dauer larvae carried by adult beetles 0, 7, 14, or 21 days after emergence from the log in which they developed. Density of dauer larvae was highest in beetles on the day of their emergence and dropped slowly through the subsequent age classes. The rate of nematode exit was low during the first week (4.5%) and higher during weeks 2 (20.5%) and 3 (13.1%). A total of 38.1% of the initial dauer larvae exited the beetles during the 3-week observation period.  相似文献   

9.
Inhibitory effects of Bursaphelenchus mucronatus on the number of B. xylophilus carried by an adult Monochamus alternatus were investigated using artificial pupal chambers. When pupal chambers were infested with either B. xylophilus or B. mucronatus, the load of B. xylophilus onto the beetle was greater (P < 0.001) than that of B. mucronatus. However, within the pupal chamber there was no difference in the abundance of the third-stage dispersal juveniles, which would molt to the fourth-stage dispersal juveniles to board beetles. The nematode load on beetles that emerged from pupal chambers infested with both Bursaphelenchus species was smaller (P = 0.015) than that of beetles with B. xylophilus alone but greater (P < 0.001) than that of beetles with B. mucronatus alone, suggesting an inhibitory effect of B. mucronatus. As a result of this study, the rate of inhibition of B. mucronatus on molting of third-stage dispersal juveniles of B. xylophilus to fourth-stage dispersal juveniles was 0.65, which resulted in great inhibition on boarding beetles at a rate of 0.7.  相似文献   

10.
Field-collected Dendroctonus frontalis were reared in a controlled environment. Male-female beetle pairs retrieved from galleries 1, 2, or 5 wk after introduction into pine bolts were examined for nematode parasites. Data were obtained for each pair on gallery length, egg niche construction, egg viability, and progeny survival. In a separate study, beetle pairs were reared under laboratory conditions for 10 wk. The number of emerged adult progeny of each pair was recorded. Contortylenchus brevicomi, a nematode parasite, was found in 25% of all beetles that established galleries. After 2 and 3 wk, female beetles infected with the nematode had produced fewer eggs and shorter galleries than did uninfected females. Uninfected females mated with nematode-infected males showed similar trends, although the differences in the 2- and 3-wk tests were not significant. Progeny survival or egg viability was not affected by nematode parasitism of either parent beetle. Unikaryon minutum, a microsporidian parasite found in 65% of all colonizing beetles, had no effect on measured variables. The lower fecundity of beetles parasitized by C. brevicomi continued throughout the insect''s reproductive cycle. After 10 wk, nematode-infected beetle pairs produced fewer emerged adult progeny than did uninfected pairs.  相似文献   

11.
The population density of Helicotylenchus lobus and the percentage of the population with spores of Pasteuria penetrans were determined for 10 monthly intervals in naturally infested turf grass soil at Riverside, California. The percentage of nematodes with attached spores ranged from 40% to 67%. No relationship was found between nematode density and the percentage of nematodes with spores. The mean and maximum numbers of spores adhering per nematode with at least one spore ranged from 2 to 8 and 7 to 66, respectively. The mean number of spores per nematode (based on total number of H. lobus) was correlated with the percentage of nematodes with spores. Spores adhered to both adult and juvenile H. lobus. Between 9% and 32% of the nematodes with spores had been penetrated and infected by the bacterium. Many infected nematodes were dead, but mature spores were also observed within living adult and juvenile H. lobus that exhibited no apparent reduction in viability and motility. Spore and central endospore diameters of this P. penetrans isolate were larger than those reported for the type isolate from Meloidogyne incognita, but transmission and scanning electron microscopy did not reveal significant morphological differences between the two isolates. Spores of the isolate associated with H. lobus did not adhere to juveniles of M. incognita.  相似文献   

12.

Background and Aims

Due in part to biophysical sized-related constraints, insects unlike vertebrates are seldom expected to act as primary seed dispersers via ingestion of fruits and seeds (endozoochory). The Mediterranean parasitic plant Cytinus hypocistis, however, possesses some characteristics that may facilitate endozoochory by beetles. By combining a long-term field study with experimental manipulation, we tested whether C. hypocistis seeds are endozoochorously dispersed by beetles.

Methods

Field studies were carried out over 4 years on six populations in southern Spain. We recorded the rate of natural fruit consumption by beetles, the extent of beetle movement, beetle behaviour and the relative importance of C. hypocistis fruits in beetle diet.

Key Results

The tenebrionid beetle Pimelia costata was an important disperser of C. hypocistis seeds, consuming up to 17·5 % of fruits per population. Forty-six per cent of beetles captured in the field consumed C. hypocistis fruits, with up to 31 seeds found in individual beetle frass. An assessment of seeds following passage through the gut of beetles indicated that seeds remained intact and viable and that the proportion of viable seeds from beetle frass was not significantly different from that of seeds collected directly from fruits.

Conclusions

A novel plant–animal interaction is revealed; endozoochory by beetles may facilitate the dispersal of viable seeds after passage through the gut away from the parent plant to potentially favourable underground sites offering a high probability of germination and establishment success. Such an ecological role has until now been attributed only to vertebrates. Future studies should consider more widely the putative role of fruit and seed ingestion by invertebrates as a dispersal mechanism, particularly for those plant species that possess small seeds.  相似文献   

13.
Pinewood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease in North America and Japan. Dispersal stage dauer larvae are transported to new host trees on the body surface and within the tracheal system of several beetle species. Worldwide, 21 species of Cerambycidae, 1 genus of Buprestidae, and 2 species of Curculionidae are known to carry pinewood nematode dauer larvae upon emerging from nematode-infested trees. Five species of cerambycids in the genus Monochamus are known to transmit dauer larvae to new host trees, four North American species and one Japanese species. Primary transmission to healthy trees occurs through beetle feeding wounds on young branches. Secondary transmission to stressed trees or recently cut logs occurs through Monochamus oviposition sites.  相似文献   

14.
Four extraction methods for Bursaphelenchus xylophilus and other aphelenchid nematodes were compared on the number of nematodes per gram recovered, and on the precision of the mean number of nematodes per gram of pine wood. The number of nematodes per gram recovered by each method, in addition to its inherent shortcomings when the actual number of nematodes is unknown, failed to provide clear rankings among the extraction methods. The precision of the mean number of nematodes per gram did provide clear guidelines for selection. Selection of the method may be based on prior knowledge about the range of nematodes to be expected or the independence of precision from the mean number of nematodes.  相似文献   

15.
The blue willow beetle, Phratora vulgatissima, is considered to be the most damaging herbivorous pest in Salix short-rotation coppices throughout Europe. The braconid parasitoid Perilitus brevicollis is an important natural enemy of Phratora. As several different Salix species are used in coppices, I investigated the bottom-up (tritrophic) effects of Salix on the parasitoid. Three host plants were studied: the introduced fast-growing S. viminalis, which is highly susceptible to the beetle; S. dasyclados, which is introduced and moderately-resistant to the beetle; and the native slow-growing Salix cinerea, which is not currently used in coppices. The identity of the host-plant species had significant effects on parasitoid larval development time; parasitoids developed rapidly on the susceptible S. viminalis and slowly on the moderately resistant S. dasyclados. Increased development time resulted in reduced adult longevity. Host-plant species identity also affected larval survival; 57%, 64%, and 49% of the parasitoids successfully completed larval development in beetles fed S. viminalis, S. cinerea, and S. dasyclados, respectively. Parasitoid development was also correlated with the body size of their beetle host, but this effect was independent of the identity of the host-plant species. The results of this study suggest that the parasitoid has higher survival and growth rates when it parasitizes beetles feeding on the common coppice species S. viminalis, but the performance of the parasite is reduced when the beetle feeds on the moderately-resistant S. dasyclados. Conversely, the omnivorous biocontrol agents sometimes used in these systems appear to perform better on S. dasyclados compared to S. viminalis. The results of this study suggest that Perilitus parasitoids and omnivorous beetle predators may provide complementary protection to Salix and therefore be useful in coppice management.  相似文献   

16.
Pine wilt is caused by the nematode Bursaphelenchus xylophilus, which is transported to host trees in the trachea of Monochamus spp. (Coleoptera: Cerambycidae). The study of the relationship between the nematode and its beetle vectors has been hampered by the inability to estimate nematode presence or density within live beetles. This report describes a rapid method for estimating nematode load within live M. carolinensis and M. alternatus by visual examination of the atrium of the first abdominal spiracle. Visual estimates of nematode numbers correlated highly with actual nematode numbers. This method is a timesaving technique for determining relative numbers of B. xylophilus in pine wilt research.  相似文献   

17.
The host suitability of five of the most common weed species occurring in maize (Zea mays L.) fields in South Africa to Pratylenchus zeae was tested. Based on the number of nematodes per root unit, mealie crotalaria (Crotalaria sphaerocarpa) was a good host; goose grass (Eleusine indica), common pigweed (Amaranthus hybridus), and thorn apple (Datura stramonium) were moderate hosts; and khaki weed (Tagetes minuta) was a poor host. Only the root residues of khaki weed suppressed the P. zeae infestation of subsequently grown maize. When goose grass, khaki weed, and mealie crotalaria were grown in association with maize in soil infested with P. zeae, goose grass and khaki weed severely suppressed maize root development; this resulted in a low number of nematodes per maize root system and a high number of nematodes per maize root unit. Mealie crotalaria did not restrict maize root growth and did not affect nematode densities per maize root system or maize root unit. Special attention should be given to the control of mealie crotalaria, which is a good host for P. zeae, and goose grass, which, in addition to its ability to compete with maize, is also a suitable host for P. zeae.  相似文献   

18.
Population densities of Pratylenchus scribneri in a Plainfield loamy sand soil were sampled from 1 October to 1 May for 4 years. From May to October of each year, the site was planted to Russet Burbank potato and Wis 4763 corn. Percentages of change in population densities of nematodes were computed on the basis of number of nematodes present on 1 October. The decline of P. scribneri between growing seasons was nonlinear, with most mortality occurring in the autumn before the soil froze. Winter survival, defined as the percentage of change in population densities from 1 October to 1 May the following year, ranged from 50 to 136% for nematodes in corn plots and from 15 to 86% for nematodes in potato plots. There was no difference in survival of nematodes of different life stages or among root and soil habitats. Winter survival of nematodes was density-dependent in 3 of 4 years in corn plots and in 1 of 4 years in potato plots. Although predators were present, their abundance was not correlated with the winter survival of nematodes. Cumulative and average snow cover was correlated with the survival of nematodes associated with corn but not with potato. No relationships between other climatic factors and survivorship were detected.  相似文献   

19.
The entomogenous nematode Steinernema feltiae was encapsulated in an alginate matrix containing a tomato seed. When these capsules were placed on 0.8% agar for 7 days, the seed germinated and ca. 20% of the nematodes escaped from the capsules, whereas only 0.1% escaped from capsules without seeds. When capsules containing nematodes and a seed were planted into sterilized or nonsterilized soil, nematodes escaped to infect Galleria mellonella larvae. When seed in capsules containing ca. 274 nematodes per capsule were planted in nonsterilized soil, Galleria mortality was 90% 1 week later. Galleria mortality declined to 27%, 23%, and 0% in weeks 2, 4, and 8 postplant, respectively. In sterilized soil, Galleria mortality was 96% and did not differ significantly from the nonsterilized soil in week 1, but was significantly higher in sterilized soil over nonsterilized soil for week 2 (81%) and week 4 (51%). When capsules containing nematodes only were used, Galleria mortality was 71% in sterilized soil 1 week after planting and 58%, 33%, and 12% in weeks 2, 4, and 8 postplant, respectively. In nonsterilized soil, Galleria mortality was 8%, 30%, 21%, and 28% after 1, 2, 4, and 8 weeks, respectively, using only encapsulated nematodes. When the number of nematodes per capsule was increased to ca. 817, Galleria mortality was 92 % or higher in sterilized soil from week 1 to week 4.  相似文献   

20.
Seven-month-old Scots pine seedlings were inoculated with water or culture filtrate (controls), with 10,000, or 20,000 (experiment 1), and with 2,500 (experiment 2) Bursaphelenchus xylophilus B.C. isolate nematodes and maintained under defined experimental conditions. Controls did not develop pine wilt disease over a 2-month period. In experiment 1, less than 50% of the inoculum was recovered from the nematode-inoculated seedlings in the first 48 hours, after which the nematode population of both treatments increased exponentially resulting in pine death and approximately equal populations at 216 hours after inoculation. In the second experiment, plant mortality, which was always preceded by 2-3 days of chlorosis and associated stem vascular necrosis, first occurred 14 days after inoculation. The nematode population increased until about day 40 after inoculation and declined thereafter. Nematodes extracted from the roots 2 weeks after inoculation accounted for ca.15% of the total number of nematodes per pine. The study indicates that the rate of nematode reproduction is a factor in pine wilt disease. However, the lack of a linear correlation between the number of nematodes and the timing of pine mortality suggests that the timing of pine death may also depend on the location of nematode damage to the host tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号