首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continued development of culturing technologies for the discovery of new molecules from marine microbes is of paramount importance for drug discovery. Coupled with this, the use of the high-throughput approach shows promise for increasing the number of Gram-negative and non-filamentous bacteria cultures that can be surveyed, since they show a lower potential of bioactivity. In this work, we propose a new strategy of high-throughput cultivation of bacteria inspired by a dilution-to-extinction (DTE) methodology for the isolation of, and screening for, new cytotoxic compound producing marine bacteria. A marine sponge tissue was directly used as inoculum and the results were compared with the data obtained through the direct plating isolation method. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) genomic fingerprinting indicated the isolation of four bioactive strains, three of them producers of a pederin-like compound, and the fourth one able to synthesize a different compound, still unidentified, rendered by the DTE approach, in comparison with one bioactive strain identified through the plating method. Analyses based on the 16S rRNA gene data showed the existence of two different species belonging to the genus Labrenzia. The efficiency and diversity ratio in the number of isolates and compounds are discussed. In view of the results, the proposed DTE approach proved to be efficient for the isolation of new cytotoxic compounds of marine origin and pave the way for future potential applications.  相似文献   

2.
Small filter-feeding zooplankton organisms like the cladoceran Daphnia spp. are key members of freshwater food webs. Although several interactions between Daphnia and bacteria have been investigated, the importance of the microbial communities inside Daphnia guts has been studied only poorly so far. In the present study, we characterised the bacterial community composition inside the digestive tract of a laboratory-reared clonal culture of Daphnia magna using 16S rRNA gene libraries and terminal-restriction length polymorphism fingerprint analyses. In addition, the diversity and stability of the intestinal microbial community were investigated over time, with different food sources as well as under starvation stress and death, and were compared to the community in the cultivation water. The diversity of the Daphnia gut microbiota was low. The bacterial community consisted mainly of Betaproteobacteria (e.g. Limnohabitans sp.), few Gammaproteobacteria (e.g. Pseudomonas sp.) and Bacteroidetes that were related to facultatively anaerobic bacteria, but did not contain typical fermentative or obligately anaerobic gut bacteria. Rather, the microbiota was constantly dominated by Limnohabitans sp. which belongs to the Lhab-A1 tribe (previously called R-BT065 cluster) that is abundant in various freshwaters. Other bacterial groups varied distinctly even under constant cultivation conditions. Overall, the intestinal microbial community did not reflect the community in the surrounding cultivation water and clustered separately when analysed via the Additive Main Effects and Multiplicative Interaction model. In addition, the microbiota proved to be stable also when Daphnia were exposed to bacteria associated with a different food alga. After starvation, the community in the digestive tract was reduced to stable members. After death of the host animals, the community composition in the gut changed distinctly, and formerly undetected bacteria were activated. Our results suggest that the Daphnia microbiota consists mainly of an aerobic resident bacterial community which is indigenous to this habitat.  相似文献   

3.
Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle's gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. The main functions associated with the bacteria found in the gut of T. lusitanicus would likely include nitrogen fixation, denitrification, detoxification, and diverse defensive roles against pathogens.  相似文献   

4.
The phenological synchrony between the emergence of overwintering herbivorous insects and the budding of host plants is considered a crucial factor in the population dynamics of herbivores. However, the mechanisms driving the interactions between the host plant, herbivores, and their pathogens are often obscure. In the current study, an artificially induced phenological asynchrony was used to investigate how the asynchrony between silver birch Betula pendula and gypsy moth Lymantria dispar affects the immunity of the insect to bacteria, its susceptibility to the entomopathogenic bacteria Bacillus thuringiensis, and the diversity in its midgut microbiota. The lysozyme‐like activity in both the midgut and hemolymph plasma and the nonspecific esterase activity and antimicrobial peptide gene expression in the midgut were studied in both noninfected and B. thuringiensis‐infected larvae. Our results provide the first evidence that phenologically asynchronous larvae are less susceptible to B. thuringiensis infection than phenologically synchronous larvae, and our results show that these effects are related to the high basic levels and B. thuringiensis‐induced levels of lysozyme‐like activities. Moreover, a 16S rRNA analysis revealed that dramatic decreases in the diversity of the larval gut bacterial consortia occurred under the effect of asynchrony. Larvae infected with B. thuringiensis presented decreased microbiota diversity if the larvae were reared synchronously with the host plant but not if they were reared asynchronously. Our study demonstrates the significant effect of phenological asynchrony on innate immunity‐mediated interactions between herbivores and entomopathogenic bacteria and highlights the role of nonpathogenic gut bacteria in these interactions.  相似文献   

5.
The potential utility of black soldier fly larvae (BSFL) to convert animal waste into harvested protein or lipid sources for feeding animal or producing biodiesel provides a new strategy for agricultural waste management. In this study, the taxonomic structure and potential metabolic and nutrient functions of the intestinal bacterial communities of BSFL were investigated in chicken and swine manure conversion systems. Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla in the BSFL gut in both the swine and chicken manure systems. After the larvae were fed manure, the proportion of Proteobacteria in their gut significantly decreased, while that of Bacteroidetes remarkably increased. Compared with the original intestinal bacterial community, approximately 90 and 109 new genera were observed in the BSFL gut during chicken and swine manure conversion, and at least half of the initial intestinal genera found remained in the gut during manure conversion. This result may be due to the presence of specialized crypts or paunches that promote microbial persistence and bacteria–host interactions. Ten core genera were found in all 21 samples, and the top three phyla among all of the communities in terms of relative abundance were Proteobacteria, Firmicutes and Bacteroidetes. The nutrient elements (OM, TN, TP, TK and CF) of manure may partly affect the succession of gut bacterial communities with one another, while TN and CF are strongly positively correlated with the relative abundance of Providencia. Some bacterial taxa with the reported ability to synthesize amino acids, Rhizobiales, Burkholderia, Bacteroidales, etc., were also observed in the BSFL gut. Functional analysis based on genes showed that intestinal microbes potentially contribute to the nutrition of BSFL and the high-level amino acid metabolism may partly explain the biological mechanisms of protein accumulation in the BSFL body. These results are helpful in understanding the biological mechanisms of high-efficiency nutrient conversion in BSFL associated with intestinal microbes.  相似文献   

6.
One of the fascinating functions of mammalian intestinal microbiota is fermentation of plant cell wall components. Eight-week continuous culture enrichments of pig feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 575 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented in the bacterial isolates: Firmicutes (242), Bacteroidetes (185), Proteobacteria (65), Fusobacteria (55), Actinobacteria (23), and Synergistetes (5). The majority of the bacterial isolates had ≥97 % similarity to cultured bacteria with sequences in the RDP, but 179 isolates represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families of Lachnospiraceae, Enterococcaceae, Staphylococcaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, Bacteroides ovatus, and B. xylanisolvens. Many of the Firmicutes and Bacteroidetes isolates were identified as species that possess enzymes that ferment plant cell wall components, and the rest likely support these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 30 % of the isolates not represented in culture, there are new opportunities to study genomic and metabolic capacities of these members of the complex intestinal microbiota.  相似文献   

7.
Flesh flies of the genus Sarcophaga (Diptera: Sarcophagidae) are carrion‐breeding, necrophagous insects important in medical and veterinary entomology as potential transmitters of pathogens to humans and animals. Our aim was to analyse the diversity of gut‐associated bacteria in wild‐caught larvae and adult flesh flies using culture‐dependent and culture‐independent methods. Analysis of 16S rRNA gene sequences from cultured isolates and clone libraries revealed bacteria affiliated to Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes in the guts of larval and adult flesh flies. Bacteria cultured from larval and adult flesh fly guts belonged to the genera Acinetobacter, Bacillus, Budvicia, Citrobacter, Dermacoccus, Enterococcus, Ignatzschineria, Lysinibacillus, Myroides, Pasteurella, Proteus, Providencia and Staphylococcus. Phylogenetic analysis showed clone sequences of the genera Aeromonas, Bacillus, Bradyrhizobium, Citrobacter, Clostridium, Corynebacterium, Ignatzschineria, Klebsiella, Pantoea, Propionibacterium, Proteus, Providencia, Serratia, Sporosarcina, Weissella and Wohlfahrtiimonas. Species of clinically significant genera such as Ignatzschineria and Wohlfahrtiimonas spp. were detected in both larvae and adult flesh flies. Sequence analysis of 16S rRNA gene libraries supported culture‐based results and revealed the presence of additional bacterial taxa. This study determined the diversity of gut microbiota in flesh flies, which will bolster the ability to assess microbiological risk associated with the presence of these flies. The present data thereby establish a platform for a much larger study.  相似文献   

8.

Background  

The human gastrointestinal (GI) tract microbiota is characterised by an abundance of uncultured bacteria most often assigned in phyla Firmicutes and Bacteroidetes. Diversity of this microbiota, even though approached with culture independent techniques in several studies, still requires more elucidation. The main purpose of this work was to study whether the genomic percent guanine and cytosine (%G+C) -based profiling and fractioning prior to 16S rRNA gene sequence analysis reveal higher microbiota diversity, especially with high G+C bacteria suggested to be underrepresented in previous studies.  相似文献   

9.
Background Mother’s milk is a source of bacteria that influences the development of the infant commensal gut microbiota. To date, the species diversity and relative abundance of lactic acid bacteria in the milk of non‐human primates have not been described. Methods Milk samples were aseptically obtained from 54 female rhesus monkeys (Macaca mulatta) at peak lactation. Following GM17 and MRS agar plating, single bacterial colonies were isolated based on difference in morphotypes, then grouped based on whole‐cell protein profiles on SDS–PAGE. Bacterial DNA was isolated and the sequence the 16S rRNA gene was analyzed. Results A total of 106 strains of 19 distinct bacterial species, belonging to five genera, Bacillus, Enterococcus, Lactobacillus, Pediococcus, and Streptococcus, were identified. Conclusions Maternal gut and oral commensal bacteria may be translocated to the mammary gland during lactation and present in milk. This pathway can be an important source of commensal bacteria to the infant gut and oral cavity.  相似文献   

10.
Aims: Larvae of the red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) feed inside palm stem tissues, making galleries and producing a wet fermenting frass. We characterized the culturable bacteria associated with frass produced by tunnelling larvae inside the Canary island date palms and investigated the role of frass and gut bacteria in plant polymers breakdown. Methods and Results: A culture‐dependent method was used to isolate bacteria from frass and noninfested palm tissues. Bacterial isolates were grouped into operational taxonomic units based on polymorphisms in the ITS‐PCR profiles, and representative isolates were identified by partial sequencing of the 16S rRNA gene. Frass bacteria were dominated by 2,3‐butanediol fermenter Enterobacteriaceae. None of the bacterial isolates was able to degrade cellulose; however, cellulolytic and hemicellulolytic bacteria were isolated from the larval gut enrichment cultures. Conclusions: Frass bacteria are specifically associated with the RPW larvae and might play beneficial roles for RPW, other than nutritional, that deserve further investigations. Breakdown of plant polymers probably occurs inside the larvae digestive system. Significance and Impact of the Study: Frass and gut micro‐organisms of R. ferrugineus should be included in studies of the interactions between RPW, its plant hosts, and its enemies.  相似文献   

11.
随着塑料在人类社会中的普及,越来越多的废弃塑料及其前体物质被遗留在环境中,且其在自然环境中的降解速度十分缓慢,为此寻找有效的降解途径成为亟待解决的科学问题。【目的】探究利用黄粉虫(Tenebrio molitor)幼虫取食聚苯乙烯对其肠道微生物种群及其代谢路径的响应,以期通过食物诱导寻找一条生物降解和利用聚苯乙烯的有效途径。【方法】以聚苯乙烯为唯一食物来源喂饲黄粉虫幼虫,通过测量幼虫存活率和个体的体重来测定其生长发育情况;通过对其肠道内容物进行16S rRNA基因测序,分析其肠道菌群结构的变化;采用京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)分析法来预测相关功能基因。【结果】取食聚苯乙烯黄粉虫幼虫存活率和体重均下降,聚苯乙烯塑料明显减少;取食聚苯乙烯的黄粉虫幼虫肠道菌群丰度与多样性明显减少,在门水平,取食聚苯乙烯的黄粉虫幼虫肠道的优势菌为变形菌门(Proteobacteria)、软壁菌门(Tenericutes)和厚壁菌门(Firmicutes);在属水平,取食聚苯乙烯的黄粉虫幼虫肠道优势菌为螺旋体菌属(Spiroplasma)、肠杆菌(Enterobacillus)和大肠埃氏-志贺氏菌(Escherichia-Shigella);通过KEGG功能预测,找到与芳香类和烷烃降解功能相关的基因共18种,取食聚苯乙烯组黄粉虫幼虫肠道菌群降解聚苯乙烯相关通路丰度升高,相关基因表达增强。【结论】聚苯乙烯可以为黄粉虫幼虫生长发育提供一定的物质和能量,且能够使其完成一个世代过程;幼虫长时间取食单一食物后,其肠道菌群结构会发生目标性变化,利用KEGG预测能够找到与聚苯乙烯代谢相关的基因,为后续研究工作提供了有价值的依据。  相似文献   

12.
The sugarcane weevil, Sphenophorus levis, is a wide-spread sugarcane pest in Brazil. Sphenophorus levis may depend on microorganisms that inhabit its intestinal tract. We examined the diversity of the gut microbiota of S. levis, which was characterized using culture-dependent and culture-independent methods. Analysis of 16S rRNA amplified directly from the gut community revealed the presence of 14 genera, one group from the Candidatus category, one uncultured group assigned to the family Flavobacteriaceae, and one uncultured group assigned to the family Enterobacteriaceae; all of them are members of the Alpha-Proteobacteria, Beta-Proteobacteria, Gamma-Proteobacteria, Firmicutes, and Bacteroidetes phyla. Microorganisms isolated through culture-dependent methods were classified according to morphological parameters and by 16S rRNA gene sequences. In addition to bacteria, four filamentous fungi were isolated. A higher bacterial diversity was observed in field populations of larvae than in laboratory populations, according to the Shannon index (Field H' = 3.36; Laboratory H' = 3.26). Five genera of bacteria and two filamentous fungi were found to have cellulolytic activity. This is the first report of S. levis gut microbiota; it may contribute to development of strategies for controlling this sugarcane pest.  相似文献   

13.
Interactions between bacterial microbiota and mosquitoes play an important role in mosquitoes’ capacity to transmit pathogens. However, microbiota assemblages within mosquitoes and the impact of microbiota in environments on mosquito development and survival remain unclear. This study examined microbiota assemblages and the effects of aquatic environment microbiota on the larval development of the Aedes albopictus mosquito, an important dengue virus vector. Life table studies have found that reducing bacterial load in natural aquatic habitats through water filtering and treatment with antibiotics significantly reduced the larva‐to‐adult emergence rate. This finding was consistent in two types of larval habitats examined—discarded tires and flowerpots, suggesting that bacteria play a crucial role in larval development. Pyrosequencing of the bacterial 16S rRNA gene was used to determine the diversity of bacterial communities in larval habitats and the resulting numbers of mosquitoes under both laboratory and field conditions. The microbiota profiling identified common shared bacteria among samples from different years; further studies are needed to determine whether these bacteria represent a core microbiota. The highest microbiota diversity was found in aquatic habitats, followed by mosquito larvae, and the lowest in adult mosquitoes. Mosquito larvae ingested their bacterial microbiota and nutrients from aquatic habitats of high microbiota diversity. Taken together, the results support the observation that Ae. albopictus larvae are able to utilize diverse bacteria from aquatic habitats and that live bacteria from aquatic habitats play an important role in larval mosquito development and survival. These findings provide new insights into bacteria's role in mosquito larval ecology.  相似文献   

14.
【目的】摇蚊是水生生态系统中重要的昆虫种类之一,其肠道微生物与个体生长发育、环境适应等过程密切相关,本研究旨在探究抗生素处理对摇蚊幼虫肠道微生物群落结构及功能的潜在影响。【方法】利用16S rRNA基因扩增子测序技术对利福平处理的红裸须摇蚊(Propsilocerus akamusi)幼虫肠道内容物中的菌群进行分析和比较,应用Tax4Fun法对其肠道菌群功能进行预测。【结果】利福平处理能够改变红裸须摇蚊幼虫肠道群落结构和多样性,宿主肠道菌群中拟杆菌门(Bacteroidota)(P<0.05)以及脱铁杆菌门(Deferribacterota)(P<0.001)的相对丰度显著上升,而变形菌门(Proteobacteria)与厚壁菌门(Firmicutes)相对丰度有所下降。在属水平上,利福平处理使耶尔森菌属(Yersinia)、假单胞菌属(Pseudomonas)、脱硫弧菌属(Desulfovibrio)的相对丰度有所降低,其中脱硫弧菌属(Desulfovibrio)显著降低。与此同时,共线性网络分析表明利福平处理后细菌群落稳定性大幅下降,菌种之间关联性显著减弱。通过京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路注释预测出红裸须摇蚊幼虫肠道菌群基因与基因信息处理、新陈代谢、人类疾病等功能相关,利福平处理可以使肠道菌群基因的抗药性功能显著上升,而内分泌和代谢疾病功能显著下降。【结论】研究结果揭示了抗生素利福平对红裸须摇蚊幼虫肠道细菌群落结构及功能的潜在影响,为进一步探索摇蚊肠道菌群发挥的必要作用奠定理论基础。  相似文献   

15.
Purpose

The aim of this study was to estimate the level of genomic and phenotypic diversity as well as the genus and species position of bacterial strains isolated from root nodules of Lembotropis nigricans (family Fabaceae).

Methods

The genomic diversity of studied L. nigricans nodule symbionts was examined by using BOX-PCR and AFLP (amplified fragment length polymorphism) fingerprinting techniques. To assign bacteria to the genus, numerical analysis of phenotypic features and comparative analysis of 16S rDNA sequences were performed. The comparative analysis of combined atpD, dnaK, gyrB, and rpoB gene sequences (multilocus sequence analysis, MLSA) was used to determine the most closely related species to the studied bacteria.

Results

Both BOX-PCR and AFLP techniques revealed a high level of genomic heterogeneity of L. nigricans nodulators. Among 33 studied bacteria, 32 genotypes were delineated by the AFLP method and 27 genotypes were identified by the BOX-PCR fingerprinting. The numerical analysis of 86 phenotypic characteristics of L. nigricans nodule isolates and reference rhizobia showed that studied bacteria belong to the genus Bradyrhizobium. Affiliation of L. nigricans nodule isolates to the genus Bradyrhizobium was supported by comparative analysis of 16S rDNA sequences and the concatenation of atpD, dnaK, gyrB, and rpoB gene sequences. MLSA indicated also that L. nigricans microsymbionts are members of Bradyrhizobium japonicum.

Conclusion

L. nigricans root nodule symbionts are members of Bradyrhizobium japonicum and exhibit high phenotypic and genomic diversity important for their survival in soil.

  相似文献   

16.
《Genomics》2022,114(3):110354
Gut microbiota of freshwater carps are often investigated for their roles in nutrient absorption, enzyme activities and probiotic properties. However, little is known about core microbiota, assembly pattern and the environmental influence on the gut microbiota of the Indian major carp, rohu. The gut microbial composition of rohu reared in different culture conditions was analysed by 16S rRNA amplicon sequencing. There was variation on gut microbial diversity and composition. A significant negative correlation between dissolved oxygen content (DO) and alpha diversity was observed, thus signifying DO content as one of the key environmental factors that regulated the diversity of rohu gut microbial community. A significant positive correlation was observed between phosphate concentration and abundance of Actinobacteria in different culture conditions. Two phyla, Proteobacteria and Actinobacteria along with OTU750868 (Streptomyces) showed significant (p < 0.05) differences in their abundance among all culture conditions. The Non-metric multidimensional scaling ordination (NMDS) analysis using Bray-Curtis distances, showed the presence of unique gut microbiota in rohu compared to other herbivorous fish. Based on niche breadth, 3 OTUs were identified as core generalists, persistent across all the culture conditions whereas the specialists dominated in the rohu gut microbiota assembly. Co-occurrence network analysis revealed positive interaction within core members while mutual exclusion between core and non-core members. Predicted microbiota function revealed that different culture conditions affected the metabolic capacity of gut microbiota of rohu. The results overall indicated the significant effect of different rearing environments on gut microbiota structure, assembly and inferred community function of rohu which might be useful for effective manipulation of gut microbial communities of rohu to promote better health and growth under different husbandry settings.  相似文献   

17.
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is an insect commonly used for the bioconversion of various organic wastes. Not only can the BSF convert organic waste into macromolecular organic substances, such as insect proteins, but it can also lessen the pollution associated with these waste products by reducing ammonia emissions, for example. In this study, we measured the effects of adding fruit fermentation broth (Fer) and commercial lactic acid bacteria fermentation broth (Em) to kitchen waste (KW), as deodorizing auxiliary substances, on the growth performance of black soldier fly larvae (BSFL), the intestinal flora structure of BSFL, the ammonia emission from the KW substrate, and the microbial community structure of the KW substrate. We found that the addition of Fer or Em increased the body weight of BSFL after 6 d of culture, increasing the growth rate by 9.96% and 7.96%, respectively. The addition of Fer not only reduced the pH of the KW substrate but also increased the relative abundance of probiotics, such as Lactobacillus, Lysinibacillus, and Vagococcus, which inhibited the growth of ammonifiers such as Bacillus, Oligella, Paenalcaligenes, Paenibacillus, Pseudogracilibacillus, and Pseudomonas, resulting in the reduction of ammonia emission in the KW substrate. Moreover, the addition of Fer or Em significantly increased the relative abundances of Bacteroides, Campylobacter, Dysgonomonas, Enterococcus, and Ignatzschineria in the gut of BSFL and increased the species diversity and richness in the KW substrate. Our findings provide a novel way to improve the conversion rate of organic waste and reduce the environmental pollution caused by BSF.  相似文献   

18.
Here we report the effects of starvation and insect age on the diversity of gut microbiota of adult desert locusts, Schistocerca gregaria, using denaturing gradient gel electrophoretic (DGGE) analysis of bacterial 16S rRNA genes. Sequencing of excised DGGE bands revealed the presence of only one potentially novel uncultured member of the Gammaproteobacteria in the guts of fed, starved, young or old locusts. Most of the 16S rRNA gene sequences were closely related to known cultured bacterial species. DGGE profiles suggested that bacterial diversity increased with insect age and did not provide evidence for a characteristic locust gut bacterial community. Starved insects are often more prone to disease, probably because they compromise on immune defence. However, the increased diversity of Gammaproteobacteria in starved locusts shown here may improve defence against enteric threats because of the role of gut bacteria in colonization resistance.  相似文献   

19.
Microbial communities in animal guts are composed of diverse, specialized bacterial species, but little is known about how gut bacteria diversify to produce genetically and ecologically distinct entities. The gut microbiota of the honey bee, Apis mellifera, presents a useful model, because it consists of a small number of characteristic bacterial species, each showing signs of diversification. Here, we used single-cell genomics to study the variation within two species of the bee gut microbiota: Gilliamella apicola and Snodgrassella alvi. For both species, our analyses revealed extensive variation in intraspecific divergence of protein-coding genes but uniformly high levels of 16S rRNA similarity. In both species, the divergence of 16S rRNA loci appears to have been curtailed by frequent recombination within populations, while other genomic regions have continuously diverged. Furthermore, gene repertoires differ markedly among strains in both species, implying distinct metabolic capabilities. Our results show that, despite minimal divergence at 16S rRNA genes, in situ diversification occurs within gut communities and generates bacterial lineages with distinct ecological niches. Therefore, important dimensions of microbial diversity are not evident from analyses of 16S rRNA, and single cell genomics has potential to elucidate processes of bacterial diversification.  相似文献   

20.
The development of gut microbiota during ontogeny is emerging as an important process influencing physiology, immunity and fitness in vertebrates. However, knowledge of how bacteria colonize the juvenile gut, how this is influenced by changes in the diversity of gut bacteria and to what extent this influences host fitness, particularly in nonmodel organisms, is lacking. Here we used 16S rRNA gene sequencing to describe the successional development of the faecal microbiome in ostriches (Struthio camelus, n = 66, repeatedly sampled) over the first 3 months of life and its relationship to growth. We found a gradual increase in microbial diversity with age that involved multiple colonization and extinction events and a major taxonomic shift in bacteria that coincided with the cessation of yolk absorption. Comparisons with the microbiota of adults (n = 5) revealed that the chicks became more similar in their microbial diversity and composition to adults as they aged. There was a five‐fold difference in juvenile growth during development, and growth during the first week of age was strongly positively correlated with the abundance of the genus Bacteroides and negatively correlated with Akkermansia. After the first week, the abundances of six phylogenetically diverse families (Peptococcaceae, S24‐7, Verrucomicrobiae, Anaeroplasmataceae, Streptococcaceae, Methanobacteriaceae) were associated with subsequent reductions in chick growth in an age‐specific and transient manner. These results have broad implications for our understanding of the development of gut microbiota and its associations with animal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号