首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Measurements have been made of the solubility at 25°C. of tyrosine in hydrochloric acid and in sodium hydroxide solutions varying from 0.001 to 0.05 M, and also in distilled water. The pH of the saturated solutions was measured with the hydrogen electrode. The following values for the ionization constants of tyrosine have been obtained from the measurements: kb = 1.57 x 10–12, ka1 = 7.8 x 10–10, ka2 = 8.5 x 10–11. The changes in solubility with pH can be satisfactorily explained by the use of these ionization constants.  相似文献   

2.
1. The solubility in water of purified, uncombined casein has previously been reported to be 0.11 gm. in 1 liter at 25°C. This solubility represents the sum of the concentrations of the casein molecule and of the soluble ions into which it dissociates. 2. The solubility of casein has now been studied in systems containing the protein and varying amounts of sodium hydroxide. It was found that casein forms a well defined soluble disodium compound, and that solubility was completely determined by (a) the solubility of the casein molecule, and (b) the concentration of the disodium casein compound. 3. In our experiments each mol of sodium hydroxide combined with approximately 2,100 gm. of casein. 4. The equivalent combining weight of casein for this base is just half the minimal molecular weight as calculated from the sulfur and phosphorus content, and one-sixth the minimal molecular weight calculated from the tryptophane content of casein. 5. From the study of systems containing the protein and very small amounts of sodium hydroxide it was possible to determine the solubility of the casein molecule, and also the degree to which it dissociated as a divalent acid and combined with base. 6. Solubility in such systems increased in direct proportion to the amount of sodium hydroxide they contained. 7. The concentration of the soluble casein compound varied inversely as the square of the hydrogen ion concentration, directly as the solubility of the casein molecule, Su, and as the constants Ka1 and Ka2 defining its acid dissociation. 8. The product of the solubility of the casein molecule and its acid dissociation constants yields the solubility product constant, Su·Ka1·Ka2 = 2.2 x 10–12 gm. casein per liter at 25°C. 9. The solubility of the casein molecule has been estimated from this constant, and also from the relation between the solubility of the casein and the sodium hydroxide concentration, to be approximately 0.09 gm. per liter at 25°C. 10. The product of the acid dissociation constants, Ka1 and Ka2, must therefore be 24 x 10–12N. 11. It is believed that these constants completely characterize the solubility of casein in systems containing the protein and small amounts of sodium hydroxide.  相似文献   

3.
1. Comparison of the rates of activation of unfertilized starfish eggs in pure solutions of a variety of parthenogenetically effective organic acids (fatty acids, carbonic acid, benzoic and salicylic acids, chloro- and nitrobenzoic acids) shows that solutions which activate the eggs at the same rate, although widely different in molecular concentration, tend to be closely similar in CH. The dissociation constants of these acids range from 3.2 x 10–7 to 1.32 x 10–3. 2. In the case of each of the fourteen acids showing parthenogenetic action the rate of activation (within the favorable range of concentration) proved nearly proportional to the concentration of acid. The estimated CH of solutions exhibiting an optimum action with exposures of 10 minutes (at 20°) lay typically between 1.1 x 10–4 M and 2.1 x 10–4 M (pH = 3.7–3.96), and in most cases between 1.6 x 10–4 M and 2.1 x 10–4 M (pH = 3.7–3.8). Formic acid (CH = 4.2 x 10–4 M) and o-chlorobenzoic acid (CH = 3.5 x 10–4 M) are exceptions; o-nitrobenzoic acid is ineffective, apparently because of slow penetration. 3. Activation is not dependent on the penetration of H ions into the egg from without, as is shown by the effects following the addition of its Na salt to the solution of the activating acid (acetic, benzoic, salicylic). The rate of activation is increased by such addition, to a degree indicating that the parthenogenetically effective component of the external solution is the undissociated free acid. Apparently the undissociated molecules alone penetrate the egg freely. It is assumed that, having penetrated, they dissociate in the interior of the egg, furnishing there the H ions which effect activation. 4. Attention is drawn to certain parallels between the physiological conditions controlling activation in the starfish egg and in the vertebrate respiratory center.  相似文献   

4.
1. The effects of a number of respiratory inhibiting agents on the cell division of fertilized eggs of Arbacia punctulata have been determined. For eggs initially exposed to the reagents at 30 minutes after fertilization at 20°C., the levels of oxygen consumption prevailing in the minimum concentrations of reagents which produced complete cleavage block were (as percentages of the control): In 0.4 per cent O2-99.6 per cent N2, 32; in 0.7 per cent O2-99.3 per cent CO, 32; in 1.6 x 10–4 M potassium cyanide, 34; in 1 x 10–3 M phenylurethane, 70; in 4 x 10–3 M 5-isoamyl-5-ethyl barbituric acid, 20; in 3 x 10–4 M iodoacetic acid, 53. 2. The carbon monoxide inhibition of oxygen consumption and cell division was reversed by light. The percentage inhibition of oxygen consumption by carbon monoxide in the dark is described by the usual mass action equation with K, the inhibition constant, equal to approximately 60, as compared to values of 5 to 10 for yeast and muscle. In 20 per cent O2-80 per cent CO in the dark there was a slight stimulation of oxygen consumption, averaging 20 per cent. 3. Spectroscopic examination of fertilized and unfertilized Arbacia eggs reduced by hydrosulfite revealed no cytochrome bands. The thickness and density of the egg suspension was such as to indicate that, if cytochrome is present at all, the amount in Arbacia eggs is extremely small as compared to that in other tissues having a comparable rate of oxygen consumption. 4. Three reagents poisoning copper catalyses, potassium dithio-oxalate (10–2 M), diphenylthiocarbazone (10–4 M), and isonitrosoacetophenone (2 x 10–3 M) produced no inhibition of division of fertilized Arbacia eggs. 5. These results indicate that the respiratory processes required to support division in the Arbacia egg may perhaps differ in certain essential steps from the principal respiratory processes in yeast and muscle.  相似文献   

5.
The data of the author and Uhlig, and new data, on the conductivity of sodium and of potassium guaiacolates in guaiacol at 25° have been computed with an improved conductance equation which is valid to somewhat higher concentrations than the equations formerly used. The new constants are, Λ0 = 9.0, K = 2.8 x 10–5 for sodium guaiacolate and Λ0 = 9.5, K = 3.4 x 10–5 for potassium guaiacolate.  相似文献   

6.
1. The chlorophyll-protein compound of the spinach leaf has been studied in the air-driven ultracentrifuge using the Svedberg light-absorption method, and a direct-reading refractive index method. 2. When the untreated extracts are centrifuged at low speeds, the green protein sediments with a purely random spread of particle sizes confirming the fact that the protein is not in true solution. 3. In the presence of digitonin, bile salts, and sodium desoxycholate, the extracts are clarified. These detergents split the chlorophyll from the protein and the protein itself shows a sedimentation constant of 13.5 x 10–13 equivalent to a molecular weight of at least 265,000 as calculated from Stokes'' law. This probably represents the minimum size of the protein in native form. 4. Sodium dodecyl sulfate, a detergent which also clarifies the leaf extracts, shows a different behavior. The prosthetic group remains attached to the protein but the protein is split into smaller units. In 0.25 per cent SDS, S 20 is 2.6 x 10–13 over a pH range of 5 to 9, although at the acid pH chlorophyll is converted to phaeophytin. In 2.5 per cent SDS, S 20 is 1.7 x 10–13 suggesting a further splitting of the protein. 5. No differences in behavior were found for the various chloroplast pigments.  相似文献   

7.
The authors wish to correct an error in the paper "The behavior of the nucleic acids during the early development of the sea urchin egg (Arbacia)" (J. Gen. Physiol., 1947–48, 31, 203). Owing to an oversight, the figures for the amounts of various P fractions in a single Arbacia egg have been erroneously expressed in γ x 10–3 units (Tables I and II, page 205; the last two lines of page 206). The figures should have been expressed in γ x 10–5 units. Thus, the fertilized Arbacia egg contains an average of 20 γ x 10–5 ribonucleic acid P and 0.7 to 1 γ x 10–5 desoxyribonucleic acid P.  相似文献   

8.
Electromotive force measurements of cells without liquid junction, of the type Ag, AgCl, HCl + protein, H2, have been made at 30°C. with the proteins gelatin, edestin, and casein in 0.1 M hydrochloric acid. The data are consistent with the assumptions of a constant combining capacity of each protein for hydrogen ion, no combination with chloride ion, and Failey''s principle of a linear variation of the logarithm of the mean activity coefficient of the acid with increasing protein concentration. The combining capacities for hydrogen ion so obtained are 13.4 x 10–4 for edestin, 9.6 x 10–4 for gelatin, and 8.0 x 10–4 for casein, in equivalents of combined H+ per gm. of protein.  相似文献   

9.
Despite considerable interest and investigations on cationic lipid–DNA complexes, reports on lipid–RNA interaction are very limited. In contrast to lipid–DNA complexes where lipid binding induces partial B to A and B to C conformational changes, lipid–tRNA complexation preserves tRNA folded state. This study is the first attempt to investigate the binding of cationic lipid with transfer RNA and the effect of lipid complexation on tRNA aggregation and condensation. We examine the interaction of tRNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant tRNA concentration and various lipid contents. FTIR, UV-visible, CD spectroscopic methods and atomic force microscopy (AFM) were used to analyze lipid binding site, the binding constant and the effects of lipid interaction on tRNA stability, conformation and condensation. Structural analysis showed lipid–tRNA interactions with G–C and A–U base pairs as well as the backbone phosphate group with overall binding constants of KChol = 5.94 (± 0.8) × 104 M–1, KDDAB = 8.33 (± 0.90) × 105 M–1, KDOTAP = 1.05 (± 0.30) × 105 M–1 and KDOPE = 2.75 (± 0.50) × 104 M–1. The order of stability of lipid–tRNA complexation is DDAB > DOTAP > Chol > DOPE. Hydrophobic interactions between lipid aliphatic tails and tRNA were observed. RNA remains in A-family structure, while biopolymer aggregation and condensation occurred at high lipid concentrations.  相似文献   

10.
Ultracentrifugation studies of diphtheria antitoxin showed that: 1. Purified antitoxin of high activity obtained from horse plasma without enzymatic treatment has exactly the same sedimentation constant as the globulin fraction obtained in a similar way from normal horse plasma s 20 water = 6.9 x 10–13. 2. Purified antitoxin obtained with trypsin digestion of the toxin-antitoxin complex has a sedimentation constant of s 20 water = 5.5 ± 0.1 x 10–13, a diffusion constant of D 20 water = 5.76 x 10–7, and a molecular weight of about 90,000. Electrophoresis experiments demonstrated that: 1. The trypsin-purified antitoxin has an isoelectric point not far from pH 7.0. 2. The reversible spreading noticed at about pH 7.3 cannot be attributed to heterogeneous preparation. 3. The large increase in the γ-globulin fraction occurring during immunization consists either of antitoxin of various degrees of activity or of some inert protein in addition to the antitoxin.  相似文献   

11.
2.5 and 1.25 per cent gelatin have been titrated potentiometrically in the absence of salts and in the presence of two concentrations (0.0750 and 0.0375µ) of NaCl, MgCl2, K2SO4, and MgSO4. The data have been used to calculate values of ± S = vz – (v – 1)z, where vz = v 2 – (v 2v) rx/18. The maximum and minimum values of S with NaCl were used to calculate the mean distance (rx) between like charges in gelatin. This is found to be 18 Å.u. or over (between acid or basic groups) which agrees with the probable value and the titration index dispersion. Thus the data with NaCl are shown to be normal and to obey the equation found to hold for simple weak electrolytes; namely, pK'' – pK = Sa See PDF for Equation where S is related to the valence and distance by the above equations. Using the NaCl data as a standard the deviations (ΔS) produced by the other salts are calculated and are found to agree quantitatively with the deviations calculated from equations derived for the simple weak electrolytes. This shows that in gelatin, as in the simple electrolytes, the deviations are related to the "apparent valences" (values which are a function of the true valence and the distance between the groups). The maximum "apparent valences" of gelatin are 2.4 for acid groups (in alkaline solution) and 1.8 for basic groups (in acid solution). These values correspond to the hypothetical condition of zero distance between the groups. They have no physical significance but have a practical utility first as mentioned above, and second in that they may be used in the unmodified Debye-Hückel equation to give the maximum effect of gelatin on the ionic strength. The true effect is probably even lower than these values would indicate. The data indicate that gelatin is a weak polyvalent ampholyte having distant groups and that the molecule has an arborescent structure with interstices permeated by molecules of the solvent and other solutes. The size and shape probably vary with the pH.  相似文献   

12.
1. The Michaelis–Menten parameters for the papain-catalysed hydrolysis of a number of alkyl, aryl and alkyl-thiol esters of hippuric acid have been determined. 2. For all the aryl esters and most of the alkyl esters studied, the catalytic constant, k0, is 2–3sec.−1 and most probably represents deacylation of the common intermediate, hippuryl-papain. 3. Two alkyl esters and hippurylamide, however, have catalytic rate constants, k0, less than 2–3sec.−1. It is possible to interpret all the available kinetic data in terms of a three-step mechanism in which an enzyme–substrate complex is first formed, followed by acylation of the enzyme through an essential thiol group, followed by deacylation of the acyl-enzyme. 4. The logarithm of the ratio of the Michaelis–Menten parameters, which reflect the acylation rate constant, for four aryl esters of hippuric acid studied give a linear Hammett plot against the substituent constant, σ. Arguments are presented that indicate acid as well as nucleophilic catalysis in the acylation process and that the most likely proton donor is an imidazolium ion. 5. It is suggested that this imidazolium ion is part of the same histidine residue that has been tentatively implicated in the deacylation process (Lowe & Williams, 1965b). 6. A new mechanism is proposed for the papain-catalysed hydrolysis of N-acyl-α-amino acid derivatives.  相似文献   

13.
A study of the oxygen consumed per lumen of luminescence during oxidation of Cypridina luciferin in presence of luciferase, gives 11.4 x 10–5 gm. oxygen per lumen or 88 molecules per quantum of λ = 0.48µ, the maximum in the Cypridina luminescence spectrum. For reasons given in the text, the actual value is probably somewhat less than this, perhaps of the order of 6.48 x 10–5 gm. per lumen or 50 molecules of oxygen and 100 molecules of luciferin per quantum. It is quite certain that more than 1 molecule per quantum must react. On the basis of a reaction of the type: luciferin + 1/2 O2 = oxyluciferin + H2O + 54 Cal., it is calculated that the total efficiency of the luminescent process, energy in luminescence/heat of reaction, is about 1 per cent; and that a luciferin solution containing 4 per cent of dried Cypridina material should rise in temperature about 0.001°C. during luminescence, and contain luciferin in approximately 0.00002 molecular concentration.  相似文献   

14.
Complexes of cationic liposomes with DNA are promising tools to deliver genetic information into cells for gene therapy and vaccines. Electrostatic interaction is thought to be the major force in lipid–DNA interaction, while lipid-base binding and the stability of cationic lipid–DNA complexes have been the subject of more debate in recent years. The aim of this study was to examine the complexation of calf-thymus DNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant DNA concentration and various lipid contents. Fourier transform infrared (FTIR), UV-visible, circular dichroism spectroscopic methods and atomic force microscopy were used to analyse lipid-binding site, the binding constant and the effects of lipid interaction on DNA stability and conformation. Structural analysis showed a strong lipid–DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of KChol = 1.4 (±0.5) × 104 M−1, KDDAB = 2.4 (±0.80) × 104 M−1, KDOTAP = 3.1 (±0.90) × 104 M−1 and KDOPE = 1.45 (± 0.60) × 104 M−1. The order of stability of lipid–DNA complexation is DOTAP>DDAB>DOPE>Chol. Hydrophobic interactions between lipid aliphatic tails and DNA were observed. Chol and DOPE induced a partial B to A-DNA conformational transition, while a partial B to C-DNA alteration occurred for DDAB and DOTAP at high lipid concentrations. DNA aggregation was observed at high lipid content.  相似文献   

15.
The present experiments were designed to evaluate the effects of varying the osmolality of luminal solutions on the antidiuretic hormone (ADH)-independent water and solute permeability properties of isolated rabbit cortical collecting tubules. In the absence of ADH, the osmotic water permeability coefficient (cm s–1) Pfl→b, computed from volume flows from hypotonic lumen to isotonic bath, was 20 ± 4 x 10–4 (SEM); the value of Pfb→l in the absence of ADH, computed from volume flows from isotonic bath to hypertonic lumen, was 88 ± 15 x 10–4 cm s–1. We also measured apparent urea permeability coefficients (cm s–1) from 14C-urea fluxes from lumen to bath (PDDureal→b) and from bath to lumen (PDDureab→l). For hypotonic luminal solutions and isotonic bathing solutions, PDDureal→b was 0.045 ± 0.004 x 10–4 and was unaffected by ADH. The ADH-independent values of PDDureal→b and Pureab→l were, respectively, 0.216 ± 0.022 x 10–4 cm s–1 and 0.033 ± 0.002 x 10–4 cm s–1 for isotonic bathing solutions and luminal solutions made hypertonic with urea, i.e., there was an absolute increase in urea permeability and asymmetry of urea fluxes. Significantly, PDDureal→b did not rise when luminal hypertonicity was produced by sucrose; and, bathing fluid hypertonicity did not alter tubular permeability to water or to urea. We interpret these data to indicate that luminal hypertonicity increased the leakiness of tight junctions to water and urea but not sucrose. Since the value of Pfb→l in the absence of ADH, when tight junctions were open to urea, was approximately half of the value of Pfl→b in the presence of ADH, when tight junctions were closed to urea, we conclude that tight junctions are negligible paracellular shunts for lumen to bath osmosis with ADH. These findings, together with those in the preceding paper, are discussed in terms of a solubility-diffusion model for water permeation in which ADH increases water solubility in luminal plasma membranes.  相似文献   

16.
Analytical observations have been made with the air ultracentrifuge on concentrated staphylococcus bacteriophage solutions and on these solutions inactivated by alkali, chymo-trypsin, and heat. All active solutions contain a homogeneous heavy component that sediments with a constant of s 20° = ca. 650 x 10–13 cm. sec.–1 dynes–1, has an apparent density of ca. 1.20, and a molecular weight probably not less than 200 millions. There is also present some very light ultraviolet-absorbing material which is not a carrier of bacteriophage activity. The amount of the heavy component is not strictly proportional to the bacteriophage activity so that if the activity resides in it, as appears to be the case, inactivation may occur without measurable change in molecular size and shape. When the bacteriophage solutions are inactivated by chymo-trypsin, the heavy component is not disrupted but the sedimenting boundaries have always been fairly diffuse. As the activity gradually disappears from alkaline solutions, the heavy component is replaced by unsedimentable material. When a solution is inactivated by heating, a dilute gel is produced which sediments with an exceptionally sharp boundary in a relatively intense centrifugal field,  相似文献   

17.
1. An anti-Escherichia coli phage has been isolated and its behavior studied. 2. A plaque counting method for this phage is described, and shown to give a number of plaques which is proportional to the phage concentration. The number of plaques is shown to be independent of agar concentration, temperature of plate incubation, and concentration of the suspension of plating bacteria. 3. The efficiency of plating, i.e. the probability of plaque formation by a phage particle, depends somewhat on the culture of bacteria used for plating, and averages around 0.4. 4. Methods are described to avoid the inactivation of phage by substances in the fresh lysates. 5. The growth of phage can be divided into three periods: adsorption of the phage on the bacterium, growth upon or within the bacterium (latent period), and the release of the phage (burst). 6. The rate of adsorption of phage was found to be proportional to the concentration of phage and to the concentration of bacteria. The rate constant ka is 1.2 x 10–9 cm.8/min. at 15°C. and 1.9 x 10–9 cm.8/min. at 25°. 7. The average latent period varies with the temperature in the same way as the division period of the bacteria. 8. The latent period before a burst of individual infected bacteria varies under constant conditions between a minimal value and about twice this value. 9. The average latent period and the average burst size are neither increased nor decreased by a fourfold infection of the bacteria with phage. 10. The average burst size is independent of the temperature, and is about 60 phage particles per bacterium. 11. The individual bursts vary in size from a few particles to about 200. The same variability is found when the early bursts are measured separately, and when all the bursts are measured at a late time.  相似文献   

18.
Electromotive force measurements of cells without liquid junction, of the type Ag, AgCl, HCl + protein, H2, lead to the conclusion that 1 gm. of edestin (or, more probably, edestan) combines with a maximum of 13.4 x 10–4 equivalents of H+ and 3.9 x 10–4 equivalents of Cl-, when the protein is dissolved in 0.1 M HCl.  相似文献   

19.
The active component of phosphate solutions, in relation to promoter action on oxidising enzymes, is the PO4 '''''' ion. This is shown by the demonstration of a hyperbolic relationship between per cent production of CO2 (of Elodea) and pPO4, the measure of the phosphate ion potential. This is consistent with the rate of respiration as affected by changing pPO4 through change of total phosphate concentration while pH is kept constant. The equation for this relationship is (CO2a) (pPO4b)n = K where a, b, n, and K are constants and n = 1. The same relationship to phosphate ion concentration, expressed by the equation (Activity of enzyme) (pPO4)n = K, where n and K are constants and n varies from 1 to 6 under different conditions, appears to hold for some other enzyme actions, including those of peroxidase and pancreatic lipase.  相似文献   

20.
We report for the first time an analysis of the ATPase activity of human DNA topoisomerase (topo) IIβ. We show that topo IIβ is a DNA-dependent ATPase that appears to fit Michaelis–Menten kinetics. The ATPase activity is stimulated 44-fold by DNA. The kcat for ATP hydrolysis by human DNA topo IIβ in the presence of DNA is 2.25 s–1. We have characterised a topo IIβ derivative which carries a mutation in the ATPase domain (S165R). S165R reduced the kcat for ATP hydrolysis by 7-fold, to 0.32 s–1, while not significantly altering the apparent Km. The specificity constant for the interaction between ATP and topo IIβ (kcat/Kmapp) showed a 90% reduction for βS165R. The DNA binding affinity and ATP-independent DNA cleavage activity of the enzyme are unaffected by this mutation. However, the strand passage activity is reduced by 80%, presumably due to reduced ATP hydrolysis. The mutant enzyme is unable to complement ts yeast topo II in vivo. We have used computer modelling to predict the arrangement of key residues at the ATPase active site of topo IIβ. Ser165 is predicted to lie very close to the bound nucleotide, and the S165R mutation could thus influence both ATP binding and ADP dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号