首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
G Saviano  P A Temussi  A Motta  C A Maggi  P Rovero 《Biochemistry》1991,30(42):10175-10181
NKA (4-10), the C-terminal heptapeptide fragment (Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) of tachykinin NKA, is more active than the parent native compound in the interaction with the NK-2 receptor. Substitution of Gly8 with the more flexible residue beta-Ala8 increases its selectivity with respect to other two known receptors (NK-1 and NK-3), whereas substitution with either D-Ala8 or GABA8 deprives the peptide of its biological activity. These findings can be interpreted by a conformational analysis based on NMR studies in DMSO-d6 and in a DMSO-d6/H2O cryoprotective mixture combined with internal energy calculations. NKA(4-10) is characterized by a structure containing a type I beta-turn extending from Ser5 to Gly8, followed by a gamma-turn centered on Gly8, whereas for [beta-Ala8]NKA(4-10) is possible to suggest a type I beta-turn extending from Ser5 to beta-Ala8, followed by a C8 turn comprising beta-Ala8 and Leu9 and by another beta-turn extending from beta-Ala8 to the terminal NH2. The preferred conformation of [beta-Ala8]NKA(4-10) is not compatible with models for NK-1 and NK-3 agonists proposed on the basis of rigid peptide agonists [Levian-Teitelbaum et al. (1989) Biopolymers 28, 51-64; Sumner & Ferretti (1989) FEBS Lett. 253, 117-120]. The preferred solution conformation of [beta-Ala8]NKA(4-10) may thus be considered as a likely bioactive conformation for NK-2 selective peptides.  相似文献   

2.
2D 1H-NMR spectra of des-Gly9-[Arg8]vasopressin in dimethylsulfoxide have been taken and the 1H resonances have been assigned. The coupling constants and amide proton temperature coefficients (delta delta/delta T) have been measured and the NOE cross-peaks in the NOESY spectrum have been analyzed. The most essential information on the spatial structure of des-Gly9-[Arg8]vasopressin is extracted from the low delta delta/delta T value for Asn5 amide proton and from the NOE between the Cys1 and Cys6 alpha-protons. A diminished accessibility of the Asn5 NH proton for the solvent is ascribed to the presence of a beta-turn in the fragment 2-5. The distance between the Cys1 and Cys6 C alpha H protons seems to be less than 4 A. These constraints were taken into account in the conformational analysis of the title peptide. The derived set of the low-energy backbone conformations was analyzed against the background of the all available NMR data. The most probable conformation of the cyclic moiety in des-Gly9-[Arg8]vasopressin was found to be the type III beta-turn. The corner positions are occupied by the residues 3, 4, while the residues 1-2 and 5-6 are at the extended sites. Some NMR data indicate that this structure is in a dynamic equilibrium with other minor conformers.  相似文献   

3.
Proton nmr parameters are reported for DMSO-d6 solutions of two receptor-selective substance P analogues: Ac[Arg6,Pro9]SP6-11, which is selective for the NK-1 (SP-P) receptor and [pGlu6,N-MePhe8]SP6-11, which selectively activates the NK-3 (SP-N) receptor. Full peak assignments of both analogues were obtained by COSY experiments. The chemical shifts, coupling constants, and temperature coefficients of amide proton chemical shifts as well as NOESY effects and calculated side-chain rotamer populations of Phe side chains are reported for both peptides. Analysis of coupling constants and temperature coefficients together with the nuclear Overhauser enhancement spectroscopy effects suggest that Ac[Arg6,Pro9]SP6-11 has a trans configuration about the Phe8-Pro9 amide bond and the preferred conformation of this analogue has a type I beta-turn. The nmr data for [pGlu6,N-MePhe8]SP6-11 suggest that this peptide exists as a mixture of cis-trans isomers in which the cis isomer can preferably adopt a type VI beta-turn conformation, and the trans isomer can adopt a gamma-turn conformation. There are indications that the two last turns are stabilized by a hydrogen bond between the syn carboxamide proton and the pGlu ring carbonyl.  相似文献   

4.
A determination of the solution conformational behavior of two tachykinins, substance P and physalaemin, is described. Two-dimensional homonuclear Hartmann-Hahn (HOHAHA) and rotating-frame cross relaxation spectroscopy (ROESY) are used to obtain complete proton resonance assignments. Interproton distance restraints obtained from ROESY spectroscopy are used to characterize the conformational behavior. These data show that in solution both substance P and physalaemin exist in a mixture of conformational states, rather than as a single three-dimensional structure. In water both peptides prefer to be in an extended chain structure. In methanol, their behavior is described as a mixture of beta-turn conformations in dynamic equilibrium. Solvent titration data and chemical shift temperature coefficients complement the NMR estimate of interproton distances by locating hydrogen bonds and serving to identify predominant conformational states. The C-terminal tetrapeptide segment has the same conformational behavior for both substance P and physalaemin. In physalaemin, the midsegment of the peptide may also be constrained by formation of a salt bridge. The conformational behavior of substance P and physalaemin is discussed in relation to potency and receptor binding properties.  相似文献   

5.
Previous studies have indicated that [Pro9]-substance P ([Pro9]-SP) possesses very good affinity for NK-1 binding sites and that, in contrast to substance P, it interacts selectively with these sites. Therefore, [3H][Pro9]-SP (75 Ci/mmol) was synthesized in order to study its binding to membranes of the rat brain. Specific binding of [3H][Pro9]-SP (75% of total binding) was temperature-dependent, saturable, and reversible. Scatchard analysis and Hill plots revealed the existence of a single population of noninteracting binding sites (KD and Bmax values: 1.48 nM and 29.7 fmol/mg of protein, respectively). Competition studies with several tachykinins and analogues indicated that the pharmacological profile of [3H][Pro9]-SP binding sites is identical to that of NK-1 binding sites. Rat brain sections labeled with either [3H][Pro9]-SP or [3H]SP, revealed a close similarity in the topographical distribution of [3H][Pro9]-SP and [3H]SP binding sites. Biochemical, pharmacological, and autoradiographic data obtained with [3H][Pro9]-SP did not provide any evidence for the existence of subtypes of NK-1 binding sites. [Pro9]-SP had neither agonist nor antagonist properties on NK-2 and NK-3 receptors. Indeed, it did not stimulate phosphoinositide turnover on the hamster urinary bladder (NK-2 assay) and was devoid of activity on the contraction of the rabbit pulmonary artery (NK-2 assay) and of the rat portal vein (NK-3 assay). As a result of its high selectivity, [Pro9]-SP thus appears an excellent tool for investigating the functional properties of NK-1 receptors.  相似文献   

6.
The crystal structure of [(4-bromo)Phe4,Met5]enkephalin (Tyr-Gly-Gly-(4-bromo)-Phe-Met) shows two independent molecular conformations. The molecules are arranged in parallel in a head-to-tail fashion and form an antiparallel beta-sheet structure involving intermolecular hydrogen bonds. This dimeric beta-structure is also observed in the [Met5]enkephalin crystal, in spite of their different crystal packing environments, which shows the energetic stability of this molecular conformation. The three-dimensional similarity between the dimeric beta-structure and the beta-turn form is discussed in the relation to the opioid delta and mu receptors.  相似文献   

7.
It has recently been shown that the adrenal gland of the frog Rana ridibunda is densely innervated by a network of fibers containing two novel tachykinins, i.e. ranakinin (the counterpart of substance P) and [Leu3, Ile7]neurokinin A. Both ranakinin and [Leu3, Ile7]neurokinin A stimulate corticosteroid secretion from frog adrenal glands in vitro. In the present study, we have investigated the pharmacological profile of the receptors involved in the stimulatory action of ranakinin on perifused frog adrenal slices. The selective NK-1 receptor antagonists [ -Pro4, -Trp7,9]substance P 4–11 and CP-96,345, did not affect the stimulatory action of ranakinin. The selective NK-1 agonist substance P 6–11 had no effect on corticosteroid secretion. The non-peptidic NK-1 receptor antagonist RP 67580 significantly reduced the stimulatory effect of ranakinin on corticosterone and aldosterone secretion by 57 and 55%, respectively. In addition, the dual NK-1/NK-2 receptor antagonist FK-224 significantly inhibited the effect of ranakinin on corticosterone (−80%) and aldosterone secretion (−95%). Finally, the amphiphilic analogue of substance P, [ -Pro2, -Phe7, -Trp9]substance P, had no effect on corticosteroid secretion. These data suggest that in the frog adrenal gland the stimulatory action of ranakinin on steroid secretion is mediated by a novel type of receptor which differs substantially from the mammalian NK-1 receptor subtype.  相似文献   

8.
We characterized the ontogeny of NK-1 receptor agonist affinity (Kd) and density (Bmax) in membranes from tracheal epithelium, smooth muscle, and lung of pigs aged 1-7 days, 8-21 days, and adult in comparison to contractile responses in vitro. Affinity of [125I] Bolton-Hunter substance P ([125I]BH-SP) in epithelium and smooth muscle was three- to fourfold lower in young piglets than in adults. The Bmax of NK-1 sites in epithelium was elevated by more than twofold at 8-21 days relative to 1-7 days piglets and adults. In the lung, NK-1 density as well as affinity was lower than in trachea, regardless of age. In all three groups, [125I]BH-SP binding was potently inhibited by Gpp(NH)p, in both trachea and lung, implying coupling to G-proteins. Inhibition by Gpp(NH)p was most potent in the adult relative to younger animals, in both tracheal epithelium and smooth muscle. Functional sensitivity to the NK-1 agonists substance P and septide was reduced in neonates, as shown by the higher concentration of agonist required to elicit contractile responses. We conclude that the reduced sensitivity of newborn piglet airways to substance P reflects immaturity of G-protein coupling to NK-1, independent of receptor density.  相似文献   

9.
The conformational and pharmacological properties that result from peptide bond reduction as well as the use of secondary amino acids in a series of cyclic peptides related to the mu opioid receptor selective antagonist D-Phe1-Cys2-Tyr3-D-Trp4-Orn5-Thr6-Pen7+ ++-Thr8-NH2 (IV), have been investigated. Peptide analogues that contain [CH2NH] and [CH2N] pseudo-peptide bonds (in primary and secondary amino acids, respectively) were synthesized on a solid support. Substitution of Tyr3 in IV by the cyclic, secondary amino acid 1,2,3,4-tetrahydroisoquinoline carboxylate (Tic) and of D-Trp4 with D-1,2,3,4-tetrahydro-beta-carboline(D-Tca4), gave peptides 4 and 1, respectively. Both analogues displayed reduced affinities for mu opioid receptors. Conformational analysis based on extensive NMR investigations demonstrated that the backbone conformations of 1 and 4 are similar to those of the potent and selective analogue D-Phe-Cys-Tyr-D-Trp-Lys-Thr-Pen-Thr-NH2 (I), while the conformational properties of the side chains of Tic3 (4) and D-Tca4 (1) resulted in topographical properties that were not well recognized by the mu opioid receptor. Peptide bond modifications were made including (Tyr3-psi[CH2NH]-D-Trp4), 3; (Tyr3-psi[CH2N]-D-Tca4), 2; and (Cys2-psi[CH2N]-Tic3), 6. These analogues showed decreases in their mu opioid receptor affinities relative to the parent compounds IV, 1, and 4, respectively. 1H NMR based conformational analysis in conjunction with receptor binding data led to the conclusion that the reduced peptide bonds in 2, 3, 5, and 6 do not contribute to the process of discrimination between mu and delta opioid receptors, and in spite of their different dynamic behaviors (relative to 1 and 4), they are still capable of attaining similar receptor bound conformations, possibly due to their increased flexibility.  相似文献   

10.
In the rat parotid gland, substance P has been shown to induce a phosphatidylinositol bisphosphate breakdown resulting in an inositol trisphosphate production. These data suggested that substance P activated a phospholipase C and thus mediated its effects through the calcium-phospholipid pathway. To determine which neurokinin (NK) receptor was involved in the substance P response, we have used selective agonists of the different NK receptors and examined their effects on both inositol trisphosphate production and calcium movements. A selective NK-1 receptor agonist, [Sar9Met(O2)11]-substance P, evoked an [3H]inositol trisphosphate production and a rapid and transient 45Ca2+ efflux. On the other hand, selective NK-2 and NK-3 receptor agonists, [beta-Ala8]-NKA(4-10) and [MePhe7]-NKB, respectively, were without effect. We conclude that, in the rat parotid glands, only the NK-1 receptors are coupled to the calcium-phospholipid pathway. The C-terminal part of substance P appeared to be sufficient to stimulate this route because the C-terminal octapeptide, substance P(4-11), mimicked substance P effects on both inositol trisphosphate production and calcium movements. The NK-2 and NK-3 receptors, if present in the rat parotid glands, are not associated with the calcium-phospholipid pathway.  相似文献   

11.
E M Krauss  D Cowburn 《Biochemistry》1981,20(4):671-679
The contribution of intramolecular hydrogen bonding to the solution structure of oxytocin was evaluated by study of amide hydrogen exchange rates in D2O by Fourier transform 1H NMR spectroscopy. Resolution enhancement filtering was employed in the determination of individual pseudo-first-order rate constants. Apparent barriers to exchange of 0.5 and 0.6 kcal mol-1 were measured for Asn5 and Cys6 peptide NH, respectively. The slowing is best explained by steric hindrance to solvent access in the case of Asn5, while for the Cys6 participation in a weak intramolecular hydrogen bond is possible. Fourfold acceleration of base-catalyzed exchange was observed for Tyr2 NH; it is proposed that this is the result of electronic effects induced by hydrogen bonding of Cys1 C=0, either to Cys6 NH or to the N-terminal amino group. Exchange proceeds near the random coil limit for each of the remaining residues. Comparison with exchange data for the model tripeptide N-acetyl-L-prolyl-L-leucylglycinamide demonstrates no evidence of noncovalent association of the tocin ring with the tripeptide tail of the hormone.  相似文献   

12.
The tripeptide acetyl-L-prolyl-L-phenylalanyl-L-histidine crystallizes in the orthorhombic space group P2(1)2(1)2(1) with eight molecules in a unit cell of dimensions a = 9.028(2), b = 140.54(6) and c = 42.41(1)A. The structure has been solved by direct methods and refined to an R value of 0.056 for 2904 observed reflections. The molecule exists as a zwitterion with terminal (His)CO2- and (imidazole)H+ as charged groups. The two peptide molecules in the structure adopt a type I beta-turn with Pro and Phe as the corner residues. The main conformational difference between the two crystallographically independent molecules is seen to be in the histidine side-chain orientations. The molecules arrange themselves in sheets perpendicular to the c axis. All hydrophobic side chains lie on one side of the sheets thus generated, whereas the hydrophilic groups are located on the other side. An interesting feature of the crystal structure is the existence of a water layer between adjacent peptide sheets. The conformational study of the isolated Ac-His-Pro-Phe-His-MA using energy calculations gives a rather limited number of stable conformers. The most stable corresponds to a type I beta-turn stabilized through two hydrogen bonds, followed by a less stable type II beta-turn (delta E = 2.0 kcal) and a partly helical structure (delta E = 2.6 kcal).  相似文献   

13.
Enzyme-substrate contacts in the hydrolysis of ester substrates by the cysteine protease papain were investigated by systematically altering backbone hydrogen-bonding and side-chain hydrophobic contacts in the substrate and determining each substrate's kinetic constants. The observed specificity energies [defined as delta delta G obs = -RT ln [(kcat/KM)first/(kcat/KM)second)]] of the substrate backbone hydrogen bonds were -2.7 kcal/mol for the P2 NH and -2.6 kcal/mol for the P1 NH when compared against substrates containing esters at those sites. The observed binding energies were -4.0 kcal/mol for the P2 Phe side chain, -1.0 kcal/mol for the P1' C=O, and -2.3 kcal/mol for the P2' NH. The latter three values probably all significantly underestimate the incremental binding energies. The P2 NH, P2 Phe side-chain, and P1 NH contacts display a strong interdependence, or cooperativity, of interaction energies that is characteristic of enzyme-substrate interactions. This interdependence arises largely from the entropic cost of forming the enzyme-substrate transition state. As favorable contacts are added successively to a substrate, the entropic penalty associated with each decreases and the free energy expressed approaches the incremental interaction energy. This is the first report of a graded cooperative effect. Elucidation of favorable enzyme-substrate contacts remote from the catalytic site will assist in the design of highly specific cysteine protease inhibitors.  相似文献   

14.
A complete series of analogs of tyrosine modified neurokinin A ([Tyr1]-NKA or [Tyr0]-NKA) has been synthesized by substituting each natural residue with 1-Cys. These analogs were tested for their ability to bind recombinant neurokinin-2 (NK-2) receptor. Substitution of Phe6 with Cys completely abolished binding of the analog to the receptor. Substitution of residues in the carboxyl-terminal region of the peptide (Met10, Leu9, Gly8, Val7) and Asp4 with Cys gave reductions in binding affinity of between 23- and 250-fold. Molecular dynamics simulations of these analogs suggest that changes in peptide structure and flexibility are not large contributors to the losses in receptor binding affinity. Reductions in binding affinity are therefore more confidently ascribed to losses of peptide-receptor interactions.  相似文献   

15.
N Frossard  C Advenier 《Life sciences》1991,49(26):1941-1953
The tachykinins, substance P, neurokinin A and neurokinin B, belong to a structural family of peptides. In mammalian airways, substance P and neurokinin A are colocalized to afferent C-fibres. Substance P-containing fibres are close to bronchial epithelium, smooth muscle, mucus glands and blood vessels. Sensory neuropeptides may be released locally, possibly as a result of a local reflex, and produce bronchial obstruction through activation of specific receptors on these various tissues. Three types of tachykinin receptors, namely NK-1, NK-2 and NK-3 receptors, have been characterized by preferential activation by substance P, neurokinin A and neurokinin B respectively. NK-1 and NK-2 receptors were recently cloned. The determination of receptor types involved in the effects of tachykinins in the airways has been done with synthetic agonists and antagonists binding specifically to NK-1, NK-2 and NK-3 receptors. Although the existence of species differences, the conclusion that bronchial smooth muscle contraction is mainly related to activation of NK-2 receptors on bronchial smooth muscle cell has been drawn. The hypothesis of a NK-2 receptor subclassification has been proposed with NK-2A receptor subtype in the guinea-pig airways. Other effects in the airways are related to stimulation of NK-1 receptors on mucus cells, vessels, epithelium and inflammatory cells. A non-receptor-mediated mechanism is also involved in the effect of substance P on inflammatory cells and mast cells.  相似文献   

16.
The peptide Boc-Val-Val-Aib-Pro-Val-Val-Val-OMe has been synthesized to investigate the effect of introduction of a strong beta-turn promoting guest segment into an oligopeptide with a tendency to form extended structures. 1H-nmr studies in solution using analysis of NH group solvent accessibility and nuclear Overhauser effects suggest an appreciable solvent dependence of conformations. In chloroform a 3(10)-helical structure is favored, while in dimethylsulfoxide an Aib-Pro beta-turn with extended arms on either side is suggested. In the crystal, the backbone forms a somewhat distorted 3(10)-helix despite the presence of a Pro residue in the middle. Among the four possible intrahelical hydrogen bonds three are of the 4----1 type and one 5----1. Head-to-tail NH...O = C hydrogen bonds link the helical molecules into continuous columns. The space group is P2(1)2(1)2(1) a = 11.320(2), b = 19.889(3), and c = 21.247(3) A.  相似文献   

17.
To gain insight into the molecular architecture of the cytoplasmic surface of G protein-coupled receptors, we have developed a disulfide cross-linking strategy using the m3 muscarinic receptor as a model system. To facilitate the interpretation of disulfide cross-linking data, we initially generated a mutant m3 muscarinic receptor (referred to as m3'(3C)-Xa) in which most native Cys residues had been deleted or substituted with Ala or Ser (remaining Cys residues Cys-140, Cys-220, and Cys-532) and in which the central portion of the third intracellular loop had been replaced with a factor Xa cleavage site. Radioligand binding and second messenger assays showed that the m3'(3C)-Xa mutant receptor was fully functional. In the next step, pairs of Cys residues were reintroduced into the m3'(3C)-Xa construct, thus generating 10 double Cys mutant receptors. All 10 mutant receptors contained a Cys residue at position 169 at the beginning of the second intracellular loop and a second Cys within the C-terminal portion of the third intracellular loop, at positions 484-493. Radioligand binding studies and phosphatidylinositol assays indicated that all double Cys mutant receptors were properly folded. Membrane lysates prepared from COS-7 cells transfected with the different mutant receptor constructs were incubated with factor Xa protease and the oxidizing agent Cu(II)-(1,10-phenanthroline)3, and the formation of intramolecular disulfide bonds between juxtaposed Cys residues was monitored by using a combined immunoprecipitation/immunoblotting strategy. To our surprise, efficient disulfide cross-linking was observed with 8 of the 10 double Cys mutant receptors studied (Cys-169/Cys-484 to Cys-491), suggesting that the intracellular m3 receptor surface is characterized by pronounced backbone fluctuations. Moreover, [35S]guanosine 5'-3-O-(thio)triphosphate binding assays indicated that the formation of intramolecular disulfide cross-links prevented or strongly inhibited receptor-mediated G protein activation, suggesting that the highly dynamic character of the cytoplasmic receptor surface is a prerequisite for efficient receptor-G protein interactions. This is the first study using a disulfide mapping strategy to examine the three-dimensional structure of a hormone-activated G protein-coupled receptor.  相似文献   

18.
Tachykinin receptors mediating substance P-induced secretion were examined in muscle-stripped segments of guinea-pig ileum set up in flux chambers. Changes in the short-circuit current (Isc) served as an index of active, electrogenic ion transport. Substance P evoked a transient increase in Isc which was concentration-dependent. The maximal change in Isc occurred at 1 microM concentration. [Sar9,Met(O2)11]-substance P, a neurokinin 1 (NK-1) receptor agonist, evoked a similar concentration-dependent increase in Isc. [Nle10]NKA(4-10) (1 microM) or [Pro7]NKB (1 microM), selective NK2 and NK3 agonists, respectively, had minimal effects on Isc. CP-96,345 (5 microM), a nonpeptide NK-1 antagonist, and the peptide NK-1 antagonist, GR82334 (1 microM), reduced the secretory response to substance P (50 nM) in the presence and absence of tetrodotoxin (0.2 microM). The NK2 antagonist, [Tyr5,D-Trp6,8,9,Arg10]NKA(4-10) MEN 10207 had no effect on the substance P response. Tetrodotoxin (0.2 microM) significantly reduced, but did not abolish the Isc response to substance P (1 microM) and [Sar9,Met(O2)11]substance P (1 microM). The substance P response was unaltered by 5 microM atropine and 50 microM mecamylamine. Piroxicam (10 microM) or pyrilamine (10 microM) or a combination of both had no effect on the tetrodotoxin-resistant substance P response. Electrical field stimulation evoked a biphasic increase in Isc which was significantly reduced by 0.2 microM tetrodotoxin. Atropine (5 microM) reduced the first peak of the biphasic response and mecamylamine (50 microM) had no effect. Similarly, 5 microM CP-96,345 and 1 microM GR82334 did not alter the EFS-induced change Isc. The results suggest that substance P-evoked secretory responses are independent of histamine or prostaglandins. Substance P responses are mediated by an NK-1 receptor type on enteric neurons and possibly epithelial cells.  相似文献   

19.
Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α‐helices compared to β‐sheets by ~0.2 kcal/mol. [2] Charge‐stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ~2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies.  相似文献   

20.
R Schwyzer 《The EMBO journal》1987,6(8):2255-2259
Based on the observed membrane structures of substance P, physalaemin, and eledoisin, preferred conformations, orientations and accumulations of 13 mammalian neurokinins and non-mammalian tachykinins were estimated and compared with pharmacologic and selective binding data taken from the literature. Principal site affinities and relative affinities supported the view that neurokinins bind to three principal mammalian sites: the NK-1 (preferring substance P), the NK-2 (preferring neurokinin A), and the NK-3 site (preferring neurokinin B). Strong hydrophobic membrane interaction of the C-terminal message segment as a perpendicularly oriented alpha-helical domain correlated with NK-1 selection. Electrostatic accumulation of the peptide at the anionic fixed charge layer of the membrane without hydrophobic interaction through a helix correlated with NK-2 preference. Electrostatic repulsion by the anionic fixed charge layer correlated with NK-3 selection. Thus, neurokinin receptor selection is guided by the same principles as opioid receptor selection. Membrane catalysis of specific agonist--receptor interactions may prove to be a quite general phenomenon, and the membrane structure of a peptide more important for its structure--activity relationship than its crystal structure or its mixture of conformers in solution or in vacuo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号