首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This continues the series of general reports on mortality in the cohort of atomic bomb survivors followed up by the Radiation Effects Research Foundation. This cohort includes 86,572 people with individual dose estimates, 60% of whom have doses of at least 5 mSv. We consider mortality for solid cancer and for noncancer diseases with 7 additional years of follow-up. There have been 9,335 deaths from solid cancer and 31,881 deaths from noncancer diseases during the 47-year follow-up. Of these, 19% of the solid cancer and 15% of the noncancer deaths occurred during the latest 7 years. We estimate that about 440 (5%) of the solid cancer deaths and 250 (0.8%) of the noncancer deaths were associated with the radiation exposure. The excess solid cancer risks appear to be linear in dose even for doses in the 0 to 150-mSv range. While excess rates for radiation-related cancers increase throughout the study period, a new finding is that relative risks decline with increasing attained age, as well as being highest for those exposed as children as noted previously. A useful representative value is that for those exposed at age 30 the solid cancer risk is elevated by 47% per sievert at age 70. There is no significant city difference in either the relative or absolute excess solid cancer risk. Site-specific analyses highlight the difficulties, and need for caution, in distinguishing between site-specific relative risks. These analyses also provide insight into the difficulties in interpretation and generalization of LSS estimates of age-at-exposure effects. The evidence for radiation effects on noncancer mortality remains strong, with risks elevated by about 14% per sievert during the last 30 years of follow-up. Statistically significant increases are seen for heart disease, stroke, digestive diseases, and respiratory diseases. The noncancer data are consistent with some non-linearity in the dose response owing to the substantial uncertainties in the data. There is no direct evidence of radiation effects for doses less than about 0.5 Sv. While there are no statistically significant variations in noncancer relative risks with age, age at exposure, or sex, the estimated effects are comparable to those seen for cancer. Lifetime risk summaries are used to examine uncertainties of the LSS noncancer disease findings.  相似文献   

2.
This report updates the data on noncancer mortality for 86,572 atomic bomb survivors with dose estimates in the Radiation Effects Research Foundation's Life Span Study cohort. The primary analyses are based on more than 27,000 noncancer disease deaths that occurred in the cohort between October 1, 1950, and December 31, 1990, 30% more than in the previous report. The present analyses strengthen earlier findings of a statistically significant increase in noncancer disease death rates with radiation dose. Increasing trends are observed for diseases of the circulatory, digestive and respiratory systems. Rates for those exposed to 1 Sv are elevated about 10%, a relative increase that is considerably smaller than that for cancer. However, estimates of the number of radiation-related noncancer deaths in the cohort to date (140 to 280) are 50 to 100% of the number for solid cancer. The data do not yet clarify the shape of the dose response. There is no significant evidence against linearity, but the data are statistically consistent with curvilinear dose-response functions that posit essentially zero risk for doses below 0.5 Sv. Similarly, while the data are consistent with substantial variation in the excess relative risk with age at exposure or attained age, there is no statistically significant dependence on these factors. In view of the small relative risks and the lack of understanding of biological mechanisms, we emphasize consideration of whether the findings could be explained by misclassification, confounding or selection effects. Based on available data, we conclude that such factors are unlikely to fully explain the observed dose response. A significant dose response is also seen for deaths from blood diseases with an excess relative risk that is several times greater than that seen for solid cancer. Particular attention is paid to the possibility that this apparent effect is a consequence of the attribution of leukemia or other cancer deaths to noncancer blood diseases. We find that misclassification does not explain this excess risk. As in earlier reports, suicide rates tend to decrease with increasing dose.  相似文献   

3.
This is the 14th report in a series of periodic general reports on mortality in the Life Span Study (LSS) cohort of atomic bomb survivors followed by the Radiation Effects Research Foundation to investigate the late health effects of the radiation from the atomic bombs. During the period 1950-2003, 58% of the 86,611 LSS cohort members with DS02 dose estimates have died. The 6 years of additional follow-up since the previous report provide substantially more information at longer periods after radiation exposure (17% more cancer deaths), especially among those under age 10 at exposure (58% more deaths). Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, and effect modification by gender, age at exposure, and attained age. The risk of all causes of death was positively associated with radiation dose. Importantly, for solid cancers the additive radiation risk (i.e., excess cancer cases per 10(4) person-years per Gy) continues to increase throughout life with a linear dose-response relationship. The sex-averaged excess relative risk per Gy was 0.42 [95% confidence interval (CI): 0.32, 0.53] for all solid cancer at age 70 years after exposure at age 30 based on a linear model. The risk increased by about 29% per decade decrease in age at exposure (95% CI: 17%, 41%). The estimated lowest dose range with a significant ERR for all solid cancer was 0 to 0.20 Gy, and a formal dose-threshold analysis indicated no threshold; i.e., zero dose was the best estimate of the threshold. The risk of cancer mortality increased significantly for most major sites, including stomach, lung, liver, colon, breast, gallbladder, esophagus, bladder and ovary, whereas rectum, pancreas, uterus, prostate and kidney parenchyma did not have significantly increased risks. An increased risk of non-neoplastic diseases including the circulatory, respiratory and digestive systems was observed, but whether these are causal relationships requires further investigation. There was no evidence of a radiation effect for infectious or external causes of death.  相似文献   

4.
Deaths in the RERF Life Span Study (LSS) sample have been determined for the years 1950-1985 and an analysis of cancer mortality with the revised DS86 doses has been described separately. In this report, we examine the relationship to dose of deaths from all diseases other than cancer. Although the evidence is still limited, there seems to be an excess risk from noncancer death at high doses (2 or 3 Gy and over). Statistically, a pure quadratic or a linear-threshold model [the estimated threshold dose is 1.4 Gy (0.6-2.8 Gy)] is found to fit better than a simple linear or linear-quadratic model. This increase in noncancer mortality is statistically demonstrable, generally, after 1965 and among the younger survivors (less than 40 at the time of the bombing), suggesting a sensitivity for this age group. For specific causes of death, an excess in relative risk at the high dose level, that is, 2 Gy or more, is seen in circulatory and digestive diseases. The relative risk is, however, much smaller than that for cancer. These findings, based as they are on death certificates, have their limitations. Most significant, perhaps, is the possible erroneous attribution of radiation-related cancer deaths to other causes. At present, the contribution such errors may make to the apparent increase in non-cancer deaths at the higher doses cannot be estimated as rigorously as is obviously desirable. However, even now, this increase does not appear to be fully explicable in terms of errors in classification. Further follow-up of mortality in this LSS cohort as well as disease revealed by the biennial physical examinations of the morbidity subsample (Adult Health Study) of the LSS cohort will be needed to confirm this suggestion of a radiation-related increase in mortality from causes other than cancer, and to determine whether it results in a demonstrable life shortening among the heavily exposed A-bomb survivors.  相似文献   

5.
This continues the series of periodic general reports on cancer mortality in the cohort of A-bomb survivors followed by the Radiation Effects Research Foundation. The follow-up is extended by the 5 years 1986-1990, and analysis includes an additional 10,500 survivors with recently estimated radiation doses. Together these extensions add about 550,000 person-years of follow-up. The cohort analyzed consists of 86,572 subjects, of which about 60% have dose estimates of at least 0.005 Sv. During 1950-1990 there have been 3086 and 4741 cancer deaths for the less than and greater than 0.005 Sv groups, respectively. It is estimated that among these there have been approximately 420 excess cancer deaths during 1950-1990, of which about 85 were due to leukemia. For cancers other than leukemia (solid cancers), about 25% of the excess deaths in 1950-1990 occurred during the last 5 years; for those exposed as children this figure is nearly 50%. For leukemia only about 3% of the excess deaths in 1950-1990 occurred in the last 5 years. Whereas most of the excess for leukemia occurred in the first 15 years after exposure, for solid cancers the pattern of excess risk is apparently more like a life-long elevation of the natural age-specific cancer risk. Taking advantage of the lengthening follow-up, increased attention is given to clarifying temporal patterns of the excess cancer risk. Emphasis is placed on describing these patterns in terms of absolute excess risk, as well as relative risk. For example: (a) although it is becoming clearer that the excess relative risk for those exposed as children has declined over the follow-up, the excess absolute risk has increased rapidly with time; and (b) although the excess relative risk at a given age depends substantially on sex and age at exposure, the age-specific excess absolute risk depends little on these factors. The primary estimates of excess risk are now given as specific to sex and age at exposure, and these include projections of dose-specific lifetime risks for this cohort. The excess lifetime risk per sievert for solid cancers for those exposed at age 30 is estimated at 0.10 and 0.14 for males and females, respectively. Those exposed at age 50 have about one-third these risks. Projection of lifetime risks for those exposed at age 10 is more uncertain. Under a reasonable set of assumptions, estimates for this group range from about 1.0-1.8 times the estimates for those exposed at age 30. The excess life-time risk for leukemia at 1 Sv for those exposed at either 10 or 30 years is estimated as about 0.015 and 0.008 for males and females, respectively. Those exposed at age 50 have about two-thirds that risk. Excess risks for solid cancer appear quite linear up to about 3 Sv, but for leukemia apparent nonlinearity in dose results in risks at 0.1 Sv estimated at about 1/20 of those for 1.0 Sv. Site-specific risk estimates are given, but it is urged that great care be taken in interpreting these, because most of their variation can be explained simply by imprecision in the estimates.  相似文献   

6.
Workers employed in 15 utilities that generate nuclear power in the United States have been followed for up to 18 years between 1979 and 1997. Their cumulative dose from whole body ionizing radiation has been determined from the dose records maintained by the facilities themselves and the REIRS and REMS systems maintained by the Nuclear Regulatory Commission and the Department of Energy, respectively. Mortality in the cohort from a number of causes has been analyzed with respect to individual radiation doses. The cohort displays a very substantial healthy worker effect, i.e. considerably lower cancer and noncancer mortality than the general population. Based on 26 and 368 deaths, respectively, positive though statistically nonsignificant associations were seen for mortality from leukemia (excluding chronic lymphocytic leukemia) and all solid cancers combined, with excess relative risks per sievert of 5.67 [95% confidence interval (CI) -2.56, 30.4] and 0.506 (95% CI -2.01, 4.64), respectively. These estimates are very similar to those from the atomic bomb survivors study, though the wide confidence intervals are also consistent with lower or higher risk estimates. A strong positive and statistically significant association between radiation dose and deaths from arteriosclerotic heart disease including coronary heart disease was also observed in the cohort, with an ERR of 8.78 (95% CI 2.10, 20.0). While associations with heart disease have been reported in some other occupational studies, the magnitude of the present association is not consistent with them and therefore needs cautious interpretation and merits further attention. At present, the relatively small number of deaths and the young age of the cohort (mean age at end of follow-up is 45 years) limit the power of the study, but further follow-up and the inclusion of the present data in an ongoing IARC combined analysis of nuclear workers from 15 countries will have greater power for testing the main hypotheses of interest.  相似文献   

7.
At present, direct data on risk from protracted or fractionated radiation exposure at low dose rates have been limited largely to studies of populations exposed to low cumulative doses with resulting low statistical power. We evaluated the cancer risks associated with protracted exposure to external whole-body gamma radiation at high cumulative doses (the average dose is 0.8 Gy and the highest doses exceed 10 Gy) in Russian nuclear workers. Cancer deaths in a cohort of about 21,500 nuclear workers who began working at the Mayak complex between 1948 and 1972 were ascertained from death certificates and autopsy reports with follow-up through December 1997. Excess relative risk models were used to estimate solid cancer and leukemia risks associated with external gamma-radiation dose with adjustment for effects of plutonium exposures. Both solid cancer and leukemia death rates increased significantly with increasing gamma-ray dose (P < 0.001). Under a linear dose-response model, the excess relative risk for lung, liver and skeletal cancers as a group (668 deaths) adjusted for plutonium exposure is 0.30 per gray (P < 0.001) and 0.08 per gray (P < 0.001) for all other solid cancers (1062 deaths). The solid cancer dose-response functions appear to be nonlinear, with the excess risk estimates at doses of less than 3 Gy being about twice those predicted by the linear model. Plutonium exposure was associated with increased risks both for lung, liver and skeletal cancers (the sites of primary plutonium deposition) and for other solid cancers as a group. A significant dose response, with no indication of plutonium exposure effects, was found for leukemia. Excess risks for leukemia exhibited a significant dependence on the time since the dose was received. For doses received within 3 to 5 years of death the excess relative risk per gray was estimated to be about 7 (P < 0.001), but this risk was only 0.45 (P = 0.02) for doses received 5 to 45 years prior to death. External gamma-ray exposures significantly increased risks of both solid cancers and leukemia in this large cohort of men and women with occupational radiation exposures. Risks at doses of less than 1 Gy may be slightly lower than those seen for doses arising from acute exposures in the atomic bomb survivors. As dose estimates for the Mayak workers are improved, it should be possible to obtain more precise estimates of solid cancer and leukemia risks from protracted external radiation exposure in this cohort.  相似文献   

8.
Little is known about long-term cancer risks following in utero radiation exposure. We evaluated the association between in utero radiation exposure and risk of solid cancer and leukemia mortality among 8,000 offspring, born from 1948-1988, of female workers at the Mayak Nuclear Facility in Ozyorsk, Russia. Mother's cumulative gamma radiation uterine dose during pregnancy served as a surrogate for fetal dose. We used Poisson regression methods to estimate relative risks (RRs) and 95% confidence intervals (CIs) of solid cancer and leukemia mortality associated with in utero radiation exposure and to quantify excess relative risks (ERRs) as a function of dose. Using currently available dosimetry information, 3,226 (40%) offspring were exposed in utero (mean dose = 54.5 mGy). Based on 75 deaths from solid cancers (28 exposed) and 12 (6 exposed) deaths from leukemia, in utero exposure status was not significantly associated with solid cancer: RR = 0.94, 95% CI 0.58 to 1.49; ERR/Gy = -0.1 (95% CI < -0.1 to 4.1), or leukemia mortality; RR = 1.65, 95% CI 0.52 to 5.27; ERR/Gy = -0.8 (95% CI < -0.8 to 46.9). These initial results provide no evidence that low-dose gamma in utero radiation exposure increases solid cancer or leukemia mortality risk, but the data are not inconsistent with such an increase. As the offspring cohort is relatively young, subsequent analyses based on larger case numbers are expected to provide more precise estimates of adult cancer mortality risk following in utero exposure to ionizing radiation.  相似文献   

9.
This is the second general report on radiation effects on the incidence of solid cancers (cancers other than malignancies of the blood or blood-forming organs) among members of the Life Span Study (LSS) cohort of Hiroshima and Nagasaki atomic bomb survivors. The analyses were based on 17,448 first primary cancers (including non-melanoma skin cancer) diagnosed from 1958 through 1998 among 105,427 cohort members with individual dose estimates who were alive and not known to have had cancer prior to 1958. Radiation-associated relative risks and excess rates were considered for all solid cancers as a group, for 19 specific cancer sites or groups of sites, and for five histology groups. Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, how these risks vary with gender, age at exposure, and attained age, and the evidence for inter-site variation in the levels and patterns of the excess risk. For all solid cancers as a group, it was estimated that about 850 (about 11%) of the cases among cohort members with colon doses in excess of 0.005 Gy were associated with atomic bomb radiation exposure. The data were consistent with a linear dose response over the 0- to 2-Gy range, while there was some flattening of the dose response at higher doses. Furthermore, there is a statistically significant dose response when analyses were limited to cohort members with doses of 0.15 Gy or less. The excess risks for all solid cancers as a group and many individual sites exhibit significant variation with gender, attained age, and age at exposure. It was estimated that, at age 70 after exposure at age 30, solid cancer rates increase by about 35% per Gy (90% CI 28%; 43%) for men and 58% per Gy (43%; 69%) for women. For all solid cancers as a group, the excess relative risk (ERR per Gy) decreases by about 17% per decade increase in age at exposure (90% CI 7%; 25%) after allowing for attained-age effects, while the ERR decreased in proportion to attained age to the power 1.65 (90% CI 2.1; 1.2) after allowing for age at exposure. Despite the decline in the ERR with attained age, excess absolute rates appeared to increase throughout the study period, providing further evidence that radiation-associated increases in cancer rates persist throughout life regardless of age at exposure. For all solid cancers as a group, women had somewhat higher excess absolute rates than men (F:M ratio 1.4; 90% CI 1.1; 1.8), but this difference disappears when the analysis was restricted to non-gender-specific cancers. Significant radiation-associated increases in risk were seen for most sites, including oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system and thyroid. Although there was no indication of a statistically significant dose response for cancers of the pancreas, prostate and kidney, the excess relative risks for these sites were also consistent with that for all solid cancers as a group. Dose-response estimates for cancers of the rectum, gallbladder and uterus were not statistically significant, and there were suggestions that the risks for these sites may be lower than those for all solid cancers combined. However, there was emerging evidence from the present data that exposure as a child may increase risks of cancer of the body of the uterus. Elevated risks were seen for all of the five broadly classified histological groups considered, including squamous cell carcinoma, adenocarcinoma, other epithelial cancers, sarcomas and other non-epithelial cancers. Although the data were limited, there was a significant radiation-associated increase in the risk of cancer occurring in adolescence and young adulthood. In view of the persisting increase in solid cancer risks, the LSS should continue to provide important new information on radiation exposure and solid cancer risks for at least another 15 to 20 years.  相似文献   

10.
The present study, the ninth in a series that began in 1961, extends the time of surveillance 3 more years and covers the period 1950-1985. It is based on the recently revised doses, termed the DS86. The impact of the change from the T65D to the DS86 on the dose-response relationships for cancer mortality was described in the first of this series of reports. Here, the focus is on cancer mortality among the 76,000 A-bomb survivors within the LSS sample for whom DS86 doses have been estimated, with the emphasis on biological issues associated with radiation carcinogenesis. Briefly, the following is found: The excess in leukemia mortality has continued to decline with time, but remains slightly but significantly elevated in 1981-1985 in Hiroshima. For cancers other than leukemia, as a group, excess deaths continue to increase over time in direct proportion to the normal increase in natural cancer mortality with increasing age, and the relative risk seems unchanged over time within age ATB cohorts. The single exception is the cohort under 10 years of age ATB. Within this group of survivors, where the relative risk, although based on relatively few deaths, has been quite high at the higher doses, as judged by deaths before the age of 30, the risk has fallen and has remained fairly constant at a lower level thereafter. Thus the present analysis still supports, in the main, estimation of lifetime risk based on the assumption of a constant relative risk. For the same age ATD, both the relative and absolute risks are higher for younger age ATB cohorts than older ones for cancers other than leukemia. There is no statistically significant difference in excess deaths between males and females except for leukemia, though the relative risk is higher for females than for males, significantly so for cancers of the esophagus and lung, reflecting the higher background cancer rate for males. Significant dose responses are observed for leukemia, cancers of the esophagus, stomach, colon, lung, breast, ovary, and urinary bladder and multiple myeloma, as previously observed. No significant increase is demonstrable as yet for cancers of the rectum, gallbladder, pancreas, uterus, and prostate and malignant lymphoma. In the present report, cancers of the bone, pharynx, nose, and larynx, and skin except melanoma are also examined, but none of these sites show a significant increase with dose.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of nuclear workers, which should improve knowledge about the risks associated with chronic low doses and provide useful risk estimates for radiation protection.  相似文献   

12.
BackgroundIonizing radiation is a cause of cancer. This paper examines the effects of radiation dose and age at exposure on the incidence of brain cancer using data from the Life Span Study (LSS) of atomic bomb survivors.MethodsThe Radiation Effects Research Foundation website provides demographic details of the LSS population, estimated radiation doses at time of bomb in 1945, person years of follow-up and incident cancers from 1958 to 1998. We modelled brain cancer incidence using background-stratified Poisson regression, and compared the excess relative risk (ERR) per Gray (Gy) of brain dose with estimates from follow-up studies of children exposed to diagnostic CT scans.ResultsAfter exposure to atomic bomb radiation at 10 years of age the estimated ERR/Gy was 0.91 (90%CI 0.53, 1.40) compared with 0.07 (90%CI −0.27, 0.56) following exposure at age 40. Exposure at 10 years of age led to an estimated excess of 17 brain tumors per 100,000 person year (pyr) Gy by 60 years of age. These LSS estimates are substantially less than estimates based on follow-up of children exposed to CT scans.ConclusionEstimates of ERR/Gy for brain cancers in the LSS and haemangioma cohorts seem much smaller than estimates of risk for young persons in the early years after exposure to CT-scans. This could be due to reverse causation bias in the CT cohorts, diagnostic error, measurement error with radiation doses, loss of early follow-up in the LSS, or non-linearity of the dose-response curve.  相似文献   

13.
Studies of radiation-associated risks among workers chronically exposed to low doses of radiation are important, both to estimate risks directly and to assess the adequacy of extrapolations of risk estimates from high-dose studies. This paper presents results based on a cohort of 45,468 nuclear power industry workers from the Canadian National Dose Registry monitored for more than 1 year for chronic low-dose whole-body ionizing radiation exposures sometime between 1957 and 1994 (mean duration of monitoring = 7.4 years, mean cumulative equivalent dose = 13.5 mSv). The excess relative risks for leukemia [excluding chronic lymphocytic leukemia (CLL)] and for all solid cancers were 52.5 [95% confidence interval (CI): 0.205, 291] and 2.80 (95% CI: -0.038, 7.13) per sievert, respectively, both associations having P values close to 0.05. Relative risks by dose categories increased monotonically for leukemia excluding CLL but were less consistent for all solid cancers combined. Although the point estimates are higher than those found in other studies of whole-body irradiation, the difference could well be due to chance. Further follow-up of this cohort or the combination of results from multiple worker studies will produce more stable estimates and thus complement the risk estimates from higher-dose studies.  相似文献   

14.
The investigation of potential adverse health effects of occupational exposures to ionizing radiation, on uranium miners, is an important area of research. Radon is a well-known carcinogen for lung, but the link between radiation exposure and other diseases remains controversial, particularly for kidney cancer. The aims of this study were therefore to perform external kidney cancer mortality analyses and to assess the relationship between occupational radiation exposure and kidney cancer mortality, using competing risks methodology, from two uranium miners cohorts. The French (n = 3,377) and German (n = 58,986) cohorts of uranium miners included 11 and 174 deaths from kidney cancer. For each cohort, the excess of kidney cancer mortality has been assessed by standardized mortality ratio (SMR) corrected for the probability of known causes of death. The associations between cumulative occupational radiation exposures (radon, external gamma radiation and long-lived radionuclides) or kidney equivalent doses and both the cause-specific hazard and the probability of occurrence of kidney cancer death have been estimated with Cox and Fine and Gray models adjusted to date of birth and considering the attained age as the timescale. No significant excess of kidney cancer mortality has been observed neither in the French cohort (SMR = 1.49, 95 % confidence interval [0.73; 2.67]) nor in the German cohort (SMR = 0.91 [0.77; 1.06]). Moreover, no significant association between kidney cancer mortality and any type of occupational radiation exposure or kidney equivalent dose has been observed. Future analyses based on further follow-up updates and/or large pooled cohorts should allow us to confirm or not the absence of association.  相似文献   

15.
The concept of effective dose with its unit, the sievert, is frequently misunderstood. Originally conceived to simplify radiation protection management, this concept is also proposed for another and very ambitions objective: a quantitative evaluation of the risks of radio-induced diseases, whatever the dose, the dose rate, the nature of radiation.... However, using the sievert for the prediction of risks of cancer or hereditary diseases is hazardous, and errors of prediction have been observed these last decades, for example the lack of prediction of the number of thyroid cancer in the very young children after the Chernobyl accident, and the overestimation of the risks such as leukaemia, other cancer and hereditary diseases. What are one sievert and its subunits?  相似文献   

16.
Dynamics of the mortality and the mortality radiation risks among male emergency workers of 1986-1987 years of entrance to the Chernobyl zone is analyzed. The average dose of external gamma-exposure for this cohort equals 128 mGy. The size of the cohort at the beginning of the follow-up in 1992 was 47820 persons. For the follow-up period 1992-2006 statistically significant radiation risks of death rates have been estimated: for the mortality from all causes, the excess relative risk per Gy (ERR/Gy) equals 0.42 with 95% confidence interval (95% CI) (0.14-0.72); for the mortality from solid cancers ERR/Gy = 0.74, 95% CI (0.03-1.76); and for the mortality from the circulatory system diseases ERR/Gy = 1.01, 95% CI (0.51-1.57). Based on these estimates the risk groups were ranked among all Russian emergency workers (160 thousand persons): the group of the potential radiation risk with doses more than 150 mGy (33488 persons) and the group of the high radiation risk with doses more than 240 mGy (6054 persons).  相似文献   

17.
The work focuses on the results of the analysis of the cancer incidence among the Chernobyl emergency workers residing in Russia during 1991-2001. The analysis is based on the data for the cohort of male emergency workers from 6 regions of Russia including 55718 persons with documented external radiation doses in the range of 0.001-0.3 Gy who worked within the 30-km zone in 1986-1987. The mean age at exposure for these persons was 34.8 years old and the mean external radiation dose 0.13 Gy. In this cohort 1370 cases of solid cancer were diagnosed. Three follow-up periods were considered: 1991-1995, 1996-2001 and 1991-2001. The second follow-up period was chosen to allow for a minimum latency period of 10 years. Risk assessments were performed for two control groups: the first control group ("external") represented incidence rates for corresponding ages in Russia in general and the second control group ("internal") consisted of emergency workers. The estimated standardized incidence ratio (SIR) is in good agreement with that of the control within 95% CI. The values of the excess relative risk per unit dose 1 Gy (ERR/Gy) for solid malignant neoplasms have been estimated to be 0.33 (95% CI: -0.39, 1.22) (internal control) for the follow-up period 1991-2001 and 0.19 (95% CI: -0.66, 1.27) for 1996-2001. The analysis of cancer morbidity was carried out for the cohort of 29003 emergency workers who took part in liquidation of the consequences of the Chernobyl accident from 26 April 1986 to 25 April 1987. It was shown that the excess relative risk of cancer deaths per unit dose 1 Sv (ERR/Sv) is equal to 1.52 (95% CI: 0.20, 2.85).  相似文献   

18.
In the 1950s many thousands of people living in rural villages on the Techa River received protracted internal and external exposures to ionizing radiation from the release of radioactive material from the Mayak plutonium production complex. The Extended Techa River Cohort includes 29,873 people born before 1950 who lived near the river sometime between 1950 and 1960. Vital status and cause of death are known for most cohort members. Individualized dose estimates have been computed using the Techa River Dosimetry System 2000. The analyses provide strong evidence of long-term carcinogenic effects of protracted low-dose-rate exposures; however, the risk estimates must be interpreted with caution because of uncertainties in the dose estimates. We provide preliminary radiation risk estimates for cancer mortality based on 1,842 solid cancer deaths (excluding bone cancer) and 61 deaths from leukemia. The excess relative risk per gray for solid cancer is 0.92 (95% CI 0.2; 1.7), while those for leukemia, including and excluding chronic lymphocytic leukemia, are 4.2 (CI 95% 1.2; 13) and 6.5 (CI 95% 1.8; 24), respectively. It is estimated that about 2.5% of the solid cancer deaths and 63% of the leukemia deaths are associated with the radiation exposure.  相似文献   

19.
The Radiation Effects Research Foundation has recently implemented a new dosimetry system, DS02, to replace the previous system, DS86. This paper assesses the effect of the change on risk estimates for radiation-related solid cancer and leukemia mortality. The changes in dose estimates were smaller than many had anticipated, with the primary systematic change being an increase of about 10% in gamma-ray estimates for both cities. In particular, an anticipated large increase of the neutron component in Hiroshima for low-dose survivors did not materialize. However, DS02 improves on DS86 in many details, including the specifics of the radiation released by the bombs and the effects of shielding by structures and terrain. The data used here extend the last reported follow-up for solid cancers by 3 years, with a total of 10,085 deaths, and extends the follow-up for leukemia by 10 years, with a total of 296 deaths. For both solid cancer and leukemia, estimated age-time patterns and sex difference are virtually unchanged by the dosimetry revision. The estimates of solid-cancer radiation risk per sievert and the curvilinear dose response for leukemia are both decreased by about 8% by the dosimetry revision, due to the increase in the gamma-ray dose estimates. The apparent shape of the dose response is virtually unchanged by the dosimetry revision, but for solid cancers, the additional 3 years of follow-up has some effect. In particular, there is for the first time a statistically significant upward curvature for solid cancer on the restricted dose range 0-2 Sv. However, the low-dose slope of a linear-quadratic fit to that dose range should probably not be relied on for risk estimation, since that is substantially smaller than the linear slopes on ranges 0-1 Sv, 0-0.5 Sv, and 0- 0.25 Sv. Although it was anticipated that the new dosimetry system might reduce some apparent dose overestimates for Nagasaki factory workers, this did not materialize, and factory workers have significantly lower risk estimates. Whether or not one makes allowance for this, there is no statistically significant city difference in the estimated cancer risk.  相似文献   

20.
Among the Life Span Study (LSS) of Atomic-bomb survivors, recent estimates showed that unspecified bladder cancer had high radiation sensitivity with a notably high female-to-male excess relative risk (ERR) per radiation dose ratio and were the only sites for which the ERR did not decrease with attained age. These findings, however, did not consider lifestyle factors, which could potentially confound or modify the risk estimates. This study estimated the radiation risks of the most prevalent subtype of urinary tract cancer, urothelial carcinoma, while accounting for smoking, consumption of fruit, vegetables, alcohol and level of education (a surrogate for socioeconomic status). Eligible study subjects included 105,402 (males = 42,890) LSS members who were cancer-free in 1958 and had estimated radiation doses. Members were censored due to loss of follow-up, incident cancer of another type, death, or the end of calendar year 2001. Surveys (by mail or clinical interview) gathered lifestyle data periodically for 1963-1991. There were 63,827 participants in one or more survey. Five hundred seventy-three incident urothelial carcinoma cases occurred, of which 364 occurred after lifestyle information was available. Analyses were performed using Poisson regression methods. The excess relative risk per weighted gray unit (the gamma component plus 10 times the neutron component, Gy(w)) was 1.00 (95% CI: 0.43-1.78) but the risks were not dependent upon age at exposure or attained age. Lifestyle factors other than smoking were not associated with urothelial carcinoma risk. Neither the magnitude of the radiation ERR estimate (1.00 compared to 0.96), nor the female-to-male (F:M) ERR/Gy(w) ratio (3.2 compared to 3.4) were greatly changed after accounting for all lifestyle factors. A multiplicative model of gender-specific radiation and smoking effects was the most revealing though there was no evidence of significant departures from either the additive or multiplicative joint effect models. Among the LSS cohort members with doses greater than 0.005 Gy(w) (average dose 0.21 Gy(w)), the attributable fraction of urothelial carcinoma due to radiation was 7.1% in males and 19.7% in females. Among current smokers, the attributable fraction of urothelial carcinoma due to smoking was 61% in males and 52% in females. Relative risk estimates of smoking risk were approximately two for smokers compared to nonsmokers. After adjustment for lifestyle factors, gender-specific radiation risks and the F:M ERR/Gy(w), the ratios of excess urothelial carcinoma risk were similar to the estimates without adjusting for lifestyle factors. Smoking was the primary factor responsible for excess urothelial carcinoma in this cohort. These findings led us to conclude that the radiation risk estimates of urothelial carcinoma do not appear to be strongly confounded or modified by smoking, consumption of alcohol, fruits, or vegetables, or level of education.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号