首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The kinetics of enzymatic saccharification of ball-milled sugar-cane bagasse, sorghum stubble and peanut shells was studied and their conversions compared. Particle size analyses were performed on the bagasse sample and pure cellulose (Solka-Floc). It was revealed that most of the size reduction of cellulose particle took place between 0 5% conversion. Means of using commercially available ultrafiltration units as continuous-flow membrane reactors to reduce glucose inhibition were tested and compared using Solka-Floc as substrate. It was pointed out that a low conversion CSTR placed between a ball-mill and a hollow-fibre cartridge could reduce the cost of pretreatment and prevent possible blockage of hollow fibres.  相似文献   

2.
A comparative study on the saccharification of pretreated rice straw was brought about by using cellulase enzyme produced by Aspergillus terreus ATCC 52430 and its mutant strain UNGI-40. The effect of enzyme and substrate concentrations on the saccharification rate at 24 and 48 were studied. A syrup with 7% sugar concentration was obtained with a 10% substrate concentration for the mutant case, whereas a syrup with 6.8% sugar concentration was obtained with 3.5 times concentrated enzyme from the wild strain. A high saccharification value was obtained with low substrate concentration; the higher the substrate concentration used, the lower the percent saccharification. The glucose content in the hydrolysate comprised 80-82% of total reducing sugars; the remainder was cellobiose and xylose together. The hydrolysate supported the growth of yeasts Candida utilis and Saccharomyces cerevisiae ATCC 52431. A biomass with a 48% protein content was obtained. The essential amino acid composition of yeast biomass was determined.  相似文献   

3.
《Process Biochemistry》2014,49(8):1266-1273
Biological processes for the degradation of intractable materials are still not considered to be practical due to the slow rates of enzymatic degradation. Cellulosomes are complexed enzyme systems with great degradative potential and one of the strategies for overcoming this problem. In this study, the laccase CueO from Escherichia coli was fused to the dockerin domain of a cellulosome system and further assembled with the scaffoldin miniCbpA, forming a laccase–miniCbpA complex. Compared to the individual subunits, laccase–miniCbpA complex caused a noticeable 2.1-fold increase in enzyme activity levels and enhanced degradation of various synthetic dyes, showing an increase of approximately 1.6-fold. Also, pretreated barley straw by laccase complexes was efficiently converted to bioethanol using a cellulase producing Saccharomyces cerevisiae strain. The laccase complexes caused a 2.6-fold increase in the amount of reduced sugar with an insoluble substrate in conditions with an identical amount of enzymes. The cellulolytic yeast with the aid of laccase complexes produced 2.34 g/L ethanol after 72 h, indicating an increase of approximately 2.1-fold compared to fermentation without the laccase complexes. This demonstrates the feasibility of developing an efficient laccase complex based on the cellulosome and this strategy may be used to degrade recalcitrant materials.  相似文献   

4.
Cellulase of Trichoderma viride was concentrated in various molecular cutoff membranes, and flux rates and retention of activity were studied under ultra-filtration conditions. Little or no Cellulase was discharged through the membranes tested. The concentrated (5–8-fold) enzymes were used to saccharify finely ground substrate (Solka Floe) in stirred tank (STR) and membrane reactors (MR). A pressure filtration vessel provided with a membrane for simultaneous removal of low molecular weight products (glucose) from the reacting system (Cellulose-Cellulase) is designated as a membrane reactor. Continuous digestion of dense cellulose suspension in the membrane reactor was achieved. Using PM-30 (Amicon) membrane reasonably high mass flux values (9.7–23.3 gals/ft2—day) were obtained in separating glucose from a digest of 30% cellulose suspension. Abcor membrane (HFA 300) was equally effective and necessitated less care in handling. Nearly 14% glucose concentration has been achieved in less than 50 hrs in STR by digesting a 30% cellulose suspension. Based on experimental data a model system is proposed for the continuous steady state Saccharification of ground substrate in which there is continuous removal of concentrated glucose syrup, and a feedback of enzyme.  相似文献   

5.
The development of second-generation bioethanol involves minimizing the energy input throughout the processing steps. We report here that efficient ionic liquid pretreatments of cellulose can be achieved with short duration times (20min) at mild temperature (45°C) with [Emim](+)[MeO(H)PO(2)](-) and at room temperature (25°C) with [Emim](+)[CH(3)COO](-). In these conditions, yields of glucose were increased by a factor of 3. In addition, the recycling of these two imidazolium-based ILs can be performed in maintaining their efficiency to pretreat cellulose. The short time and mild temperature of cellulose solubilization allowed a one-batch processing of [Emim](+)[MeO(H)PO(2)](-) IL-pretreatment and saccharification. In the range from 0 to 100% IL in an aqueous enzymatic medium, the glucose yields were improved at IL proportions between 10 and 40%. The maximum yield at 10% IL is very promising to consider one batch process as efficient as two-step process.  相似文献   

6.
The saccharification of agricultural woody wastes was studied using a commercial enzyme preparation, Cellulase onozuka, derived from Trichoderma viride or the solid culture extracts of the fungus. With the intention of producing sugar at low cost, a simple procedure of enzymatic saccharification of rice straw, bagasse, and sawdust was studied. Delignifying methods of these wastes were investigated using dilute sodium hydroxide solution and dilute peracetic acid. Rice straw and bagasse were effectively delignified by boiling in a 1% sodium hydroxide solution for 3 hr or by autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr. The sawdust from a broad leaved tree (Machilus thunbergii) was delignified by autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr and by subsequent boiling in diluted 1/5 peracetic acid for 1 hr. This type of sawdust was also delignified by boiling in 1/5 peracetic acid for 1 hr and by subsequent autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr. The sawdust from a coniferous tree (Cryptomeria japonica) was delignified by boiling in 1/5 peracetic acid for 1 hr and by subsequent autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr; however, the successive treatment by autoclaving with alkali solution and subsequent boiling with diluted peracetic acid failed to bring about the desired effect. The saccharification of delignified rice straw, bagasse, and sawdust was examined using Cellulase onozuka, wheat bran or rice straw solid culture at various substrate concentrations, resulting in the formation of 5 to 10% sugar solutions after incubation at pH 5.0, 45 degrees C for 48 hr. The optimum substrate concentration existed at around 10%. Reuse of cellulase solution and resaccharification of residual sawdust were considered to be inadequate.  相似文献   

7.
Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR‐22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR‐22 was run in the BCR using 1% alkali‐pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed‐batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321–326, 2016  相似文献   

8.
9.
Anaerobic fermentation was attempted to produce methane from the wood chip (Eucalyptus globulus). By the pretreatment of the wood chip using hot water with high temperature, NaOH, and steam explosion, the production of methane gas was enhanced. The pretreatment using steam explosion resulted in more amount of methane gas produced than the treatment using either hot water or 1% (w/w) NaOH with high temperature, and the steam explosion at a steam pressure of 25 atm and a steaming time of 3 min was the most effective for the methane production. The amount of methane gas produced depended on the ratio of weight of Klason lignin, a high molecular weight lignin, in the treated wood chip.  相似文献   

10.
The biochemical conversion of cellulosic biomass to ethanol, a promising alternative fuel, can be carried out efficiently and economically using the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis of cellulose to glucose, catalyzed by the synergistic action of cellulase and beta-glucosidase, with the fermentative synthesis of ethanol. Because the enzymatic step determines the ethanol. Because the enzymatic step determines the availability of glucose to the ethanologenic fermentation, the kinetic of cellulose hydrolysis by cellulase and beta-glucosidase and the susceptibility of the two enzymes to inhibition by hydrolysis and fermentation products are of significant importance to the SSF performance and were investigated under realistic SSF conditions. A previously developed SSF mathematical model was used to conceptualize the depolymerization of cellulose. The model was regressed to the collected data to determine the values of the enzyme parameters and was found to satisfactorily predict the kinetics of cellulose hydrolysis. Cellobiose and glucose were identified as the strongest inhibitors of cellulase and beta-glucosidase, respectively. Experimental and modeling results are presented in light of the impact of enzymatic hydrolysis on fuel ethanol production. (c) 1993 Wiley & Sons, Inc.  相似文献   

11.
Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose (c-NFC) powder were prepared by UV polymerization of N-vinyl-2-pyrrolidone with Tween 20 trimethacrylate as a cross-linking agent for replacement of the native, human nucleus pulposus (NP) in intervertebral disks. The swelling ratios and the moduli of elasticity in compression of neat and biocomposite hydrogels were evaluated in dependence of c-NFC concentration (ranging from 0 to 1.6% v/v) and degree of substitution (DS, ranging from 0 to 0.23). The viscoelastic properties in shear and the material relaxation behavior in compression were measured for neat and biocomposite hydrogels containing 0.4% v/v of fibrils (DS ranging from 0 to 0.23), and their morphologies were characterized by cryo-scanning electron microscopy (cryo-SEM). The obtained results show that the biocomposite hydrogels can successfully mimic the mechanical and swelling behavior of the NP. In addition, the presence of the c-NFC shows lower strain values after cyclic compression tests and consequently creates improved material relaxation properties compared with neat hydrogels. Among the tested samples, the biocomposite hydrogel containing 0.4% v/v of c-NFC with a DS of 0.17 shows the closest behavior to native NP. Further investigation should focus on evaluation and improvement of the long-term relaxation behavior.  相似文献   

12.
13.
Pretreatments for enzymatic saccharification are crucial for the establishment of lignocellulosic biorefineries. In this study, we focused on ammonium ions and peroxometal complexes as potential delignifying agents. We first examined the pretreatment of beech wood with nine different ammonium salts in the presence of H2O2. Significant pretreatment effects were found only for ammonium molybdate, which is transformed to a peroxometal complex on reacting with H2O2. Since microwave sensitizer effects are expected for (peroxo)molybdate, beech wood was pretreated using external heating and microwave irradiation. As a result, a maximum sugar yield of 59.5% was obtained by microwave irradiation at 140 °C for 30 min, while external heating in an autoclave gave a sugar yield of 41.8%. We also found that an ammonium ion is the key counterion accelerating the pretreatment with molybdate. These results highlight the powerful selective delignifying capability of the H2O2-activated ammonium molybdate system energised by microwave radiation.  相似文献   

14.
The effects of temperature on enzymatic saccharification of cellulose and simulataneous saccharification and fermentation (SSF) were investigated with 100 g·l−1 Solka Floc, 5g·l−1Trichoderma reesei cellulase, and Zymomonas mobilis ATCC 29191. The following results were obtained: 1) Ethanol fermentation under glucose dificient conditions can proceed for more than 100 h at 30°C but gradually ceases after 50 h of operation at 40°C. 2) Equivalent glucose yield based on cellulose for SSF operated at its optimum temperature (37°C) is higher than that for enzymatic saccharification of cellulose at the same temperature by 32%. However, the same equivalent glucose yields were obtained for both processes if they were operated at their respective optimum temperature. 3) SSF with temperature cycling increased the ethanol productivity but gave similar ethanol yield to SSF at 37°C. 4) SSF with temperature profiling gave an ethanol yield of 0.32 g·g−1 and cellulose use of 0.86 g·g−1 which were increased by 39% and 34% over SSF with temperature cycling and at 37°C.  相似文献   

15.
Lignocellulosic biomass, if properly saccharified, could be an ideal feedstock for biohydrogen production. However, the high cellulases cost is the key obstacle to its development. In this work, cost‐effective enzyme produced by Trichoderma viride was used to saccharify cornstalk. To obtain high sugar yield, a central composite design of response surface method was used to optimize enzymatic saccharification process. Experimental results showed that the enzymatic saccharification rate reached the highest of 81.2% when pH, temperature, cellulases and substrate concentration were 5, 49.7 °C, 35.7 IU g?1, and 38.5 g L?1, respectively. The cornstalk hydrolysate was subsequently introduced to fermentation by Thermoanaerobacterium thermosaccharolyticum W16, the yield of hydrogen reached the highest level of 90.6 ml H2 g?1 pretreated cornstalk. The present results indicate the potential of using T. thermosaccharolyticum W16 for high yield conversion of cornstalk hydrolysate, which was saccharified by onsite enzyme produced by T. viride.  相似文献   

16.
Immobilized Sporotrichum cellulophilum with nonwoven materials was cultured continuously by a rotating-disk fermentor to supply cellulase into the saccharification system. The filter paper activity (5.0) was retained after 696 h under conditions of 250 rpm stirring and 0.014 h(-1) dilution rate. The product of the culture was supplied continuously to the saccharification reactor and used for the saccharification of bagasse. A glucose solution of ca. 0.9% was obtained continuously from 5% bagasse slurry during 610 h saccharification by this method.  相似文献   

17.
The aim of this study was to systematically evaluate the pelletization process parameters of kappa-carrageenan-containing formulations. The study dealt with the effect of 4 process parameters--screw speed, number of die holes, friction plate speed, and spheronizer temperature--on the pellet properties of shape, size, size distribution, tensile strength, and drug release. These parameters were varied systematically in a 2(4) full factorial design. In addition, 4 drugs--phenacetin, chloramphenicol, dimenhydrinate, and lidocaine hydrochloride--were investigated under constant process conditions. The most spherical pellets were achieved in a high yield by using a large number of die holes and a high spheronizer speed. There was no relevant influence of the investigated process parameters on the size distribution, mechanical stability, and drug release. The poorly soluble drugs, phenacetin and chloramphenicol, resulted in pellets with adequate shape, size, and tensile strength and a fast drug release. The salts of dimenhydrinate and lidocaine affected pellet shape, mechanical stability, and the drug release properties using an aqueous solution of pH 3 as a granulation liquid. In the case of dimenhydrinate, this was attributed to the ionic interactions with kappa-carrageenan, resulting in a stable matrix during dissolution that did not disintegrate. The effect of lidocaine is comparable to the effect of sodium ions, which suppress the gelling of carrageenan, resulting in pellets with fast disintegration and drug release characteristics. The pellet properties are affected by the process parameters and the active pharmaceutical ingredient used.  相似文献   

18.
Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P‐CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co‐IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low‐DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3‐fold and ethanol productivity by 34%–42%. This study has for the first time reported a direct modification for the low‐DP cellulose production that has broad applications in biomass industries.  相似文献   

19.
The design and application of a settler to a continuous fermentation process with yeast recycle were studied. The compact lamella-type settler was chosen to avoid large volumes associated with conventional settling tanks. A rationale of the design method is covered. The sedimentation area was determined by classical batch settling rate tests and sedimentation capacity calculation. Limitations on the residence time of the microorganisms in the settler, rather than sludge thickening considerations, was the approach employed for volume calculation. Fermentation rate tests with yeast after different sedimentation periods were carried out to define a suitable residence time. Continuous cell recycle fermentation runs, performed with the old and new sedimentation devices, show that lamella settler improves biomass recycling efficiency, being the process able to operate at higher sugar concentrations and faster dilution rates.  相似文献   

20.
A method for the continuous affinity separation of proteins is described in which the adsorbent, in the form of a polymer belt, is recycled through feedstock and eluent liquid flows. As the belt is nonporous, contact between the solute and the ligand is not diffusion-dependent. Consequently, rapid cycle rates are possible. Soybean trypsin inhibitor immobilized on nylon was used as an affinity ligand for the isolation of trypsin. During a 30-h continuous run, trypsin was isolated from a crude preparation of bovine pancreas with a recovery of 30% to 40%. Approximately 18 mg of trypsin was obtained from 500 mg of protein using a total of approximately 10 mug of ligand. Electrophoretic analysis of the eluent showed that chymotrypsin, which also binds to SBTI, was the only major contaminant of the product. It was demonstrated that the highest rates of protein purification were obtained using solid/liquid contact times well below that required to achieve saturation of the affinity adsorbent. Slower adsorbent recycle rates, which achieved higher protein binding per unit area of belt, resulted in lower protein purification per unit time. The rate of purification was also dependent on the concentration of target protein in the adsorption chamber at steady state. As high concentrations increased losses from the chamber outflow, this resulted in a compromise between throughput and recovery during the adsorption phase. Under the conditions investigated, recoveries of over 60% were obtained, and a maximum throughput of approximately 2.5 mg trypsin per hour was achieved. Preliminary studies have shown that this can be improved by compartmentalizing the adsorption chamber, which can reduce losses from the adsorption chamber to less than 5%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 538-545, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号