首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FGFs and BMPs act in concert to regulate a wide range of processes in vertebrate development. In most cases, FGFs and BMPs have opposing effects, and specific developmental outcomes arise out of a balance between the two growth factors. We and others have previously demonstrated that signaling pathways activated by FGFs and BMPs interact via inhibitory crosstalk. Here we demonstrate a role for the BMP effector TGF-β Activated Kinase 1 (TAK1) in the maintenance of Smad1 activity in Xenopus embryos, via the inhibition of erk MAPK. Up- or downregulation of TAK1 levels produces an inverse alteration in the amount of activated erk MAPK. The inhibition of erk MAPK by TAK1 is mediated by p38 and a corresponding decrease in phosphorylation of MEK. TAK1 morphant embryos show a decrease in the nuclear accumulation of Smad1. Conversely, reduction of erk MAPK activity via overexpression of MAP Kinase Phosphatase1 (MKP1) leads to an increase in nuclear Smad1. Both TAK1 morphant ectoderm and ectoderm treated with FGF show a decrease in the expression of several Smad1-inducible genes. Neural-specific gene expression is inhibited in isolated ectoderm coexpressing noggin and TAK1, suggesting that TAK1 is sufficient to inhibit neural specification. Introduction of TAK1 morpholino oligonucleotide expands the expression of organizer genes, disrupts formation of the boundary between organizer and non-organizer mesoderm, and increases the spatial range of MAPK activation in response to localized FGF. Our results indicate that inhibitory interactions between FGF and BMP4 effector pathways increase the robustness of BMP signaling via a feed-forward mechanism.  相似文献   

2.
3.
4.
MDP (muramyl dipeptide), a component of peptidoglycan, interacts with NOD2 (nucleotide-binding oligomerization domain 2) stimulating the NOD2-RIP2 (receptor-interacting protein 2) complex to activate signalling pathways important for antibacterial defence. Here we demonstrate that the protein kinase activity of RIP2 has two functions, namely to limit the strength of downstream signalling and to stabilize the active enzyme. Thus pharmacological inhibition of RIP2 kinase with either SB 203580 [a p38 MAPK (mitogen-activated protein kinase) inhibitor] or the Src family kinase inhibitor PP2 induces a rapid and drastic decrease in the level of the RIP2 protein, which may explain why these RIP2 inhibitors block MDP-stimulated downstream signalling and the production of IL-1beta (interleukin-1beta) and TNFalpha (tumour necrosis factor-alpha). We also show that RIP2 induces the activation of the protein kinase TAK1 (transforming-growth-factor-beta-activated kinase-1), that a dominant-negative mutant of TAK1 inhibits RIP2-induced activation of JNK (c-Jun N-terminal kinase) and p38alpha MAPK, and that signalling downstream of NOD2 or RIP2 is reduced by the TAK1 inhibitor (5Z)-7-oxozeaenol or in TAK1-deficient cells. We also show that MDP activates ERK1 (extracellular-signal-regulated kinase 1)/ERK2 and p38alpha MAPK in human peripheral-blood mononuclear cells and that the activity of both MAPKs and TAK1 are required for MDP-induced signalling and production of IL-1beta and TNFalpha in these cells. Taken together, our results indicate that the MDP-NOD2/RIP2 and LPS (lipopolysaccharide)-TLR4 (Toll-like receptor 4) signalling pathways converge at the level of TAK1 and that many subsequent events that lead to the production of pro-inflammatory cytokines are common to both pathways.  相似文献   

5.
Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha   总被引:1,自引:0,他引:1  
TAB1, a subunit of the kinase TAK1, was phosphorylated by SAPK2a/p38alpha at Ser423, Thr431 and Ser438 in vitro. TAB1 became phosphorylated at all three sites when cells were exposed to cellular stresses, or stimulated with tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) or lipopolysaccharide (LPS). The phosphorylation of Ser423 and Thr431 was prevented if cells were pre-incubated with SB 203580, while the phosphorylation of Ser438 was partially inhibited by PD 184352. Ser423 is the first residue phosphorylated by SAPK2a/p38alpha that is not followed by proline. The activation of TAK1 was enhanced by SB 203580 in LPS-stimulated macrophages, and by proinflammatory cytokines or osmotic shock in epithelial KB cells or embryonic fibroblasts. The activation of TAK1 by TNF-alpha, IL-1 or osmotic shock was also enhanced in embryonic fibroblasts from SAPK2a/p38alpha-deficient mice, while incubation of these cells with SB 203580 had no effect. Our results suggest that TAB1 participates in a SAPK2a/p38alpha-mediated feedback control of TAK1, which not only limits the activation of SAPK2a/p38alpha but synchronizes its activity with other signalling pathways that lie downstream of TAK1 (JNK and IKK).  相似文献   

6.
The activation of p38 MAPK by dual phosphorylation aggravates myocardial ischemic injury and depresses cardiac contractile function. SB203580, an ATP-competitive inhibitor of p38 MAPK and other kinases, prevents this dual phosphorylation during ischemia. Studies in non-cardiac tissue have shown receptor-interacting protein 2 (RIP2) lies upstream of p38 MAPK, is SB203580-sensitive and ischemia-responsive, and aggravates ischemic injury. We therefore examined the RIP2-p38 MAPK signaling axis in the heart. Adenovirus-driven expression of wild-type RIP2 in adult rat ventricular myocytes caused robust, SB203580-sensitive dual phosphorylation of p38 MAPK associated with activation of p38 MAPK kinases MKK3, MKK4, and MKK6. The effect of SB203580 was recapitulated by unrelated inhibitors of RIP2 or the downstream MAPK kinase kinase, TAK1. However, overexpression of wild-type, kinase-dead, caspase recruitment domain-deleted, or kinase-dead and caspase recruitment domain-deleted forms of RIP2 had no effect on the activating dual phosphorylation of p38 MAPK during simulated ischemia. Similarly, p38 MAPK activation and myocardial infarction size in response to true ischemia did not differ between hearts from wild-type and RIP2 null mice. However, both p38 MAPK activation and the contractile depression caused by the endotoxin component muramyl dipeptide were attenuated by SB203580 and in RIP2 null hearts. Although RIP2 can cause myocardial p38 MAPK dual phosphorylation in the heart under some circumstances, it is not responsible for the SB203580-sensitive pattern of activation during ischemia.  相似文献   

7.
Certain G protein-coupled receptors (GPCRs) stimulate the activities of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), members of the MAPK family. We investigated the role of JNK and p38 MAPK activation induced by the alpha1B-adrenergic receptor in the proliferation of human embryonic kidney 293T cells. Activation of the alpha1B-adrenergic receptor resulted in inhibition of cell proliferation. This receptor-induced inhibition of proliferation was blocked by a kinase-deficient MKK4 and by the p38 MAPK inhibitor SB203580. Additionally, transfection of constitutively activated Galphaq into cells also led to inhibition of proliferation in a JNK- and p38 MAPK-dependent manner. These results demonstrate that the alpha1B-adrenergic receptor/Galphaq signaling inhibits cell proliferation through pathways involving JNK and p38 MAPK.  相似文献   

8.
丝裂原激活蛋白激酶(MAPK)和 NFκB介导了炎症细胞转录活性的信号转导过程.转化生长因子β激活性激酶(TGFβ-activated kinase 1,TAK1)是这些转导通路的上游激酶.通过在胶质细胞株中瞬时转染TAK1和它的结合蛋白因子(TAK1-binding protein1 TAB1)基因,或与iNOS(可诱导型氧化氮合酶基因)启动子报告基因(iNOS-Luc)质粒共转染,探讨中枢两类胶质细胞在炎症反应过程中TAK1诱导iNOS 和细胞因子表达的作用机制.结果显示,TAK1明显激活iNOS 和细胞因子(TNFα、IL-1、IL-6)的表达活性. 而且当使用它的下游激酶p38 MAPK、JNK和NFκB的抑制剂(SB203580、SP620125和CAPE)后,这些表达活性明显被抑制.用IκBα的磷酸化突变体质粒(IκBαM)共转染胶质细胞株,能完全抑制iNOS的表达活性.研究结果提示:在胶质细胞内的p38 MAPK、JNK和NFκB信号介导的iNOS和细胞因子的转录表达过程中,TAK1起着非常重要的调节作用.  相似文献   

9.
10.
11.
12.
13.
E. tenella infection is associated with a severe intestinal disease leading to high economic losses in poultry industry. Mitogen activated protein kinases (MAPKs) are implicated in early response to infection and are divided in three pathways: p38, extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK). Our objective was to determine the importance of these kinases on cell invasion by E. tenella. We evaluated the effect of specific inhibitors (ERK: PD98059, JNKII: SP600125, p38 MAPK: SB203580) on the invasion of epithelial cells. Incubation of SP600125 and SB203580 with epithelial cells and parasites significantly inhibited cell invasion with the highest degree of inhibition (90%) for SB203580. Silencing of the host p38α MAPK expression by siRNA led to only 20% decrease in cell invasion. In addition, when mammalian epithelial cells were pre-treated with SB203580, and washed prior infection, a 30% decrease in cell invasion was observed. This decrease was overcome when a p38 MAPK activator, anisomycin was added during infection. This suggests an active but limited role of the host p38 MAPK in this process. We next determined whether SB203580 has a direct effect on the parasite. Indeed, parasite motility and secretion of micronemal proteins (EtMIC1, 2, 3 and 5) that are involved in cell invasion were both decreased in the presence of the inhibitor. After chasing the inhibitor, parasite motility and secretion of micronemal proteins were restored and subsequently cell invasion. SB203580 inhibits cell invasion by acting partly on the host cell and mainly on the parasite.  相似文献   

14.
Regulation of GDF-8 signaling by the p38 MAPK   总被引:3,自引:0,他引:3  
Philip B  Lu Z  Gao Y 《Cellular signalling》2005,17(3):365-375
  相似文献   

15.
Kalmes A  Deou J  Clowes AW  Daum G 《FEBS letters》1999,444(1):71-74
SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imi dazole) is widely used as a specific inhibitor of p38 mitogen-activated protein kinase (MAPK). Here, we report that SB203580 activates the serine/threonine kinase Raf-1 in quiescent smooth muscle cells in a dose-dependent fashion. The concentrations of SB203580 required lie above those necessary to inhibit p38 MAPK and we were unable to detect basal levels of active p38 MAPK. SB203580 does not directly activate Raf-1 in vitro, and fails to activate Ras, MEK, and ERK in intact cells. In vitro, however, SB203580-stimulated Raf-1 activates MEK1 in a coupled assay. We conclude that activation of Raf-1 by SB203580 is not mediated by an inhibition of p38 MAPK, is Ras-independent, and is uncoupled from MEK/ERK signaling.  相似文献   

16.
Despite its lack of specificity, the inhibitor SB 203580 has been widely used to implicate p38 mitogen-activated protein kinase (MAPK) in the synthesis of many cytokines. Here we show unequivocally that the production of interleukin (IL)-1beta, IL-6, IL-10, and tumor necrosis factor alpha (TNFalpha) requires p38 MAPK activity by demonstrating that the inhibitory effects of SB 203580 were reversed by expression of an SB 203580-resistant form of p38alpha (SBR-p38alpha) that fails to bind to SB 203580. This strategy established the requirement for p38 activity for the lipopolysaccharide-stimulated production of IL-10, IL-1beta, and IL-6 by the monocytic cell WEHI 274 and the production of IL-6 and TNFalpha stimulated by ligation of the Fc-gamma receptor of the mast cell MC/9. Expression of SBR-p38alpha in primary macrophages abrogated the ability of SB 203580 to inhibit the lipopolysaccharide-stimulated production of TNFalpha but not of IL-10. Expression of SBR-p38alpha in primary T lymphocytes abrogated the ability of SB 203580 to inhibit the production of interferon-gamma induced by co-ligation of CD3 and CD28 but not the production of interferon-gamma or IL-10 induced by IL-12. These results suggest that the levels of p38 MAPK activity required for maximal cytokine production vary with different cytokines and stimuli.  相似文献   

17.
Transforming growth factor beta (TGFbeta) can signal through a variety of Smad-independent pathways, including the p38 MAPK pathway. Recent work has shown that inhibitors of p38 MAPK, such as SB203580 and SB202190, can inhibit signaling induced by TGFbeta. Here we show that another p38 MAPK inhibitor, PD169316, abrogates signaling initiated by both TGFbeta and Activin A, but not bone morphogenetic protein (BMP) 4. Inhibition of TGFbeta signaling is dose dependent and results in reduced Smad2 and Smad3 phosphorylation, nuclear translocation, and up-regulation of the TGFbeta target gene Smad7. Reduced TGFbeta signaling is not due to abrogation of p38 MAPK activity, since blocking p38 MAPK activity with a dominant negative form of p38 MAPK has no effect on TGFbeta/Smad signaling. Our results show that use of PD169316 at 5 MICROM or higher can block TGFbeta signaling activity and thus caution must be used when attributing cellular activities exclusively to p38 MAPK signaling when these inhibitors are used experimentally.  相似文献   

18.
The synthesis of melanin pigments, or melanogenesis, is regulated by the balance of a variety of signal transduction pathways. Among these pathways, p38 MAPK signaling was found to be involved in stress-induced melanogenesis and to be activated by α-melanocyte-stimulating hormone (α-MSH) and ultraviolet irradiation. Previous studies have shown that α-MSH-stimulated melanogenesis can be inhibited by blocking p38 MAPK activity with SB203580, a pyridinyl imidazole compound. Consistent with this, we observed that pyridinyl imidazoles (SB203580 and SB202190) inhibited both basal and α-MSH-induced melanogenesis in B16 melanoma cells. However, SB202474, which has no ability to inhibit p38 MAPK activity and is usually used as a negative control compound in p38 MAPK studies, also suppressed melanin synthesis induction. Furthermore, the independence of the p38 kinase pathway from the repression of melanogenesis by pyridinyl imidazole compounds was also confirmed by small interfering RNA experiments. Interfering with p38 MAPK expression surprisingly stimulated melanogenesis and tyrosinase family protein expression. Although the molecular mechanism(s) by which p38 promotes the degradation of melanogenic enzymes remain to be determined, the involvement of the ubiquitin-proteasome pathway was demonstrated by co-treatment with the proteasome-specific inhibitor MG132 and the relative decrease in the ubiquitination of tyrosinase in cells transfected with p38-specific small interfering RNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号