首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs.  相似文献   

2.
Many studies have been conducted on phytoextraction; however, non-native hyperaccumulator species are not suitable for the natural environment of Taiwan in many cases. Drawing upon previous results, the growth and heavy metal accumulation in artificially cadmium-contaminated soils were compared for five local garden flower species. The treatments included a control (CK), 9.73 +/- 0.05 mg kg(-1) (Cd-10), and 17.6 +/- 0.8 mg kg(-1) (Cd-20). All plants were harvested at 35 days after transplanting and analyzed for Cd content. Cd accumulation in the shoot of French marigold (Tagetes patula L.) and Impatiens (Impatiens walleriana Hook. f.) grown in Cd-20 treatment were 66.3 +/- 6.5 and 100 +/- 11 mg kg(-1), which equated to a removal of 0.80 +/- 0.11 and 0.60 +/- 0.37 mg Cd plant(-1), respectively. The maximum Cd accumulation of Impatiens reached the threshold value (100 mg kg(-1)) characteristic of a Cd hyperaccumulator and its bioconcentration factor (BCF) and translocation factor (TF) were greater than one. Impatiens therefore has the potential to hyperaccumulate Cd from Cd-contaminated soils. With the exception of Garden verbena, significant relationships were found between Cd concentrations in soil extracted by 0.05 M EDTA, 0.005 M DTPA, and 0.01 M CaCl2 and the concentration of Cd in the shoots of the tested garden flowers.  相似文献   

3.
The effectiveness of heavy metal uptake from contaminated nutrient solution by four aquatic macrophytes (Pistia stratiotes L., Salvinia auriculata AubL, Salvinia minima Baker, and Azolla filiculoides Lam) was estimated in this study. The influence of cadmium (3.5 mg L(-1) and 10.5 mg L(-1)) and lead (25 mg L(-1) and 125 mg L(-1)) on the stress symptoms was observed through the determination of chlorophyll content and transpiration rate over 14 days of the experiment. The results of the present study showed extreme reductions in Cd and Pb concentrations in solution during the first 4 days. The accumulation of Pb in plant tissues was the highest during the first 4 days and was more than 10 times higher in the roots (42,862 mg kg(-1)) than in the leaves (3867 mg kg(-1)). The accumulation of Cd slowly increased and was the highest at the end of the experiment. Concentrations in roots (3923 mg kg(-1)) were roughly 6 times higher than in the leaves (624 mg kg(-1)). Results showed significant decrease in the transpiration rate at Pb treatment and a significant increase at Cd treatment during 48 hours of exposition.  相似文献   

4.
Greenhouse and field trial experiments were performed to evaluate the use of Chromolaena odorata with various soil amendments for phytoextraction of Pb contaminated soil Pb mine soils contain low amount of nutrients, so the additions of organic (cow manure) and inorganic (Osmocote and NH4NO3 and KCl) fertilizers with EDTA were used to enhance plant growth and Pb accumulation. Greenhouse study showed that cow manure decreased available Pb concentrations and resulted in the highest Pb concentration in roots (4660 mg kg(-1)) and shoots (389.2 mg kg(-1)). EDTA increased Pb accumulation in shoots (17-fold) and roots (11-fold) in plants grown in soil with Osmocote with Pb uptake up to 203.5 mg plant(-1). Application of all fertilizers had no significant effects on relative growth rates of C. odorata. Field trial study showed that C. odorata grown in soil with 99545 mg kg(-1) total Pb accumulated up to 3730.2 and 6698.2 mg kg(-1) in shoots and roots, respectively, with the highest phytoextraction coefficient (1.25) and translocation factor (1.18). These results indicated that C. odorata could be used for phytoextraction of Pb contaminated soil. In addition, more effective Pb accumulation could be enhanced by Osmocote fertilizer. However, the use of EDTA in the field should be concerned with their leaching problems.  相似文献   

5.
The main limiting factor for cleaning-up contaminated soils with hyperaccumulator plants is the low production of aerial biomass and the number of successive crops needed to reach the objective of remediation. The aim of this study was to contribute to the determination of a fertilisation strategy to optimise soil metal phytoextraction by Thlaspi caerulescens. A pot experiment was conducted on an agricultural soil and on a contaminated soil from the vicinity of a former Pb/Zn smelter. The nitrogen (N) treatment consisted of 4 levels (0, 11, 21.5 and 31 mg N kg(-1) dry soil (DS)) added as NH4NO3. The highest N treatment was combined with 4 levels of phosphorus (P) (0, 20, 40 and 80 mg P kg(-1) DS as KH2PO4) and sulfur (S) additions (0, 10, 20 and 30 mg S kg(-1) DS as MgSO4). The highest N fertilisation contributed significantly to enhance biomass production of T. caerulescens and to decrease the concentration of Cd and Zn in the biomass. At constant N addition, P supply did not affect metal extraction by T. caerulescens but negatively affected plant health. Sulfur supply slightly increased phytoextraction of Cd. Our results show that N and S fertilisation might interact but further investigations on the effect of such interaction on Cd extraction efficiency are needed.  相似文献   

6.
A pot experiment was conducted for three vegetation periods on a sandy soil (pH 7.5) to study the uptake and distribution of Cd in plant tissues of Calamagrostis epigejos (L.) Roth. Cadmium was applied as CdCl2 (a total of 11 solution of 0, 20. 100, and 200 mg Cd l(-1)). HNO3- and water-extractable concentrations of Cd in 2- and 20-cm soil depths were correlated with the applied Cd showing that Cd was very mobile in the soil. The uptake of Cd from soil by Calamagrostis epigejos was directly related to the total soil Cd content and to the water-soluble pool of Cd. The concentrations of Cd in plant tissues (roots, rhizomes, leaves) and litter increased with increased applied Cd. Most of the Cd that was taken up was accumulated in roots (range from 1.88+/-0.42 to 40.96+/-16.71 mg kg(-1) dry mass), followed by rhizomes (0.52+/-0.13 to 25.70+/-6.35 mg kg(-1)) and leaves (0.30+/-0.06 to 9.20+/-1.93 mg kg(-1)). Cd concentrations of the litter were about twofold greater than the concentrations in the leaves (0.67+/-0.07 to 18.98+/-7.00 mg kg(-1)). The bioaccumulation factor (leaf/soil concentration ratio) increased significantly from 0.70+/-0.10 (control) to 1.1+/-0.17 (100 mg Cd l(-1)), but decreased again at the highest Cd level (200 mg Cd l(-1)) toward 0.74+/-0.34, which was not significantly different from the control. The low transfer of Cd from soil to above-ground organs at higher soil Cd concentrations indicates an exclusion mechanism. The leaf/root Cd concentration ratio (translocation factor) shows no significant relationship to increasing soil contamination. Only 4-7% of the total plant Cd was accumulated in the above-ground tissues. The phytoextraction potential (total Cd removed from soil) within three growing seasons ranged from 0.11 to 0.25% of the total soil Cd. Total output in above-ground living and dead plant material of C. epigejos would be approximately 20 g ha(-1) a(-1) for the lowest contamination level (+20 mg Cd per pot) and approximately 275 g ha(-1) a(-1) for the highest contamination level (+200 mg Cd per pot). This is within the range where an application for phytoextraction of Cd has been suggested by other authors. However, we conclude that the practical use of C. epigejos for phytoremediation is not mainly in the field of phytoextraction, but phytostabilization. C. epigejos has the capability to structurally stabilize the soil and reduce Cd contamination spread due to erosion. The uptake of the available Cd pool and accumulation in below-ground biomass may further prevent leaching into ground water.  相似文献   

7.
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012–2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil?1 accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.  相似文献   

8.
The effect of nitrate, ammonium and urea on the mineralization of [(14)C]hexadecane (C(16)H(34)) and on denitrification was evaluated in two soils contaminated with diesel fuel. In soil A, addition of N fertilizers did not stimulate or inhibit background hexadecane mineralization (4.3 mg C(16)H(34) kg(-1) day(-1)). In soil B, only NaNO(3) stimulated hexadecane mineralization (0.91 mg C(16)H(34) kg(-1) day(-1)) compared to soil not supplemented with any nitrogen nutrient (0.17 mg C(16)H(34) kg(-1) day(-1)). Hexadecane mineralization was not stimulated in this soil by NH(4)NO(3) (0.13 mg C(16)H(34) kg(-1) day(-1)), but the addition of NH(4)Cl or urea suppressed hexadecane mineralization (0.015 mg C(16)H(34) kg(-1) day(-1)). Addition of 2 kPa C(2)H(2) did not inhibit the mineralization process in either soil. Denitrification occurred in both soils studied when supplemented with NaNO(3) and NH(4)NO(3), but was not detected with other N sources. Denitrification started after a longer lag in soil A (10 days) than in soil B (4 days). In soil A microcosms supplemented with NaNO(3) or NH(4)NO(3), rates of denitrification were 20.6 and 13.6 mg NO(3)(-) kg(-1) day(-1), respectively, and in soil B, they were 18.5 and 12.5 mg NO(3)(-) kg(-1) day(-1), respectively. We conclude that denitrification may lead to a substantial loss of nitrate, making it unavailable to the mineralizing bacterial population. Nitrous oxide was an important end-product accounting for 30-100% of total denitrification. These results indicate the need for preliminary treatability studies before implementing full-scale treatment processes incorporating commercial fertilizers.  相似文献   

9.
The potential for cadmium (Cd) removal from contaminated soil by two species—marigold (Tagetes erecta L.) and Guinea grass (Panicum maximum)—was investigated in pot culture experiments in a greenhouse in triplicate. The concentration of Cd was varied from 50 to 200 mg kg?1 and the pH was varied from 5.0 to 7.5 to investigate the effect of pH on Cd uptake. The results showed that total biomass of Guinea grass was around nine and seven times higher than that of marigold for Cd treatments of 50 and 100 mg kg?1 at pH 5.0, respectively. Total cadmium uptake at Cd treatments of 50 and 100 mg kg?1 at pH 5.0 by Guinea grass was 19.28 ± 3.14 and 36.06 ± 4.28 mg kg?1, respectively, and for marigold was 15.66 ± 4.17 and 20.38 ± 3.24 mg kg?1, respectively. The total Cd uptake by Guinea grass was 1.23 and 1.77 higher than that of marigold at Cd treatments of 50 and 100 mg kg?1, respectively, at pH 5.0 due to higher biomass. The maximum Cd uptake by marigold and Guinea grass occurred at pH 5.0 at Cd treatment of 100 mg kg?1. The results clearly show that the two species behave very differently for Cd uptake. Guinea grass is easy to grow, drought tolerant and, due to its higher biomass, it can be used for remediation of Cd-contaminated soil.  相似文献   

10.
The aim of this study was to investigate effect of calcium on growth, survival, essential oil yield and chemical compositions of vetiver grass grown on lead contaminated soils. Calcium inform of CaCO3 (0, 2000, 4000, 6000 mg Ca kg(-1)) was added to river sand soils containing 4000 mg Pb kg(-1) dry soil. Results showed that, in the absence of calcium treatment, no plants survived after 2 weeks of cultivation, while the rest grew well to the end of the experimental period (42 weeks). Calcium treatments generally resulted in a slight decrease in biomass. Interestingly, an increase in calcium over 2000 mg kg(-1) did not result in a decrease in accumulation of lead in vetiver roots and shoots. The levels of lead in roots and shoots under calcium treatments were around 2000 and 90 mg kg(-1) dry weight, respectively. The addition of CaCO3 did not improve vetiver essential oil yield and chemical composition compared to the control. A level of applied CaCO3 about half of the lead concentration in soils was sufficient to improve vetiver growth and survival, and accumulate high concentrations of lead in the roots. This finding can be applied for re-vegetation of lead contaminated soils using vetiver.  相似文献   

11.
广东省典型区域农业土壤中邻苯二甲酸酯含量的分布特征   总被引:20,自引:0,他引:20  
采用气相色谱方法,对广东省典型区域农业表层土壤(0~20cm)样品中的6种邻苯二甲酸酯(PAEs)进行了测定.结果表明:6种PAEs化合物的总含量(∑PAEs)为nd(未检出)~25.99mg.kg-1,其中92.8%的样品分布在≤1mg.kg-1的范围;各种土地利用类型中∑PAEs的顺序依次为水田>香蕉地>菜地>甘蔗地>果园地;不同地区土壤中∑PAEs的顺序依次为东莞市>汕头市>佛山市顺德区>湛江市>中山市>珠海市>惠州市.邻苯二甲酸二(2-乙基已基)酯(DEHP)的检出率最高(85.1%),邻苯二甲酸二正丁酯(DnBP)含量最高(nd~17.51mg.kg-1).与美国土壤PAEs控制标准相比,除邻苯二甲酸二正辛酯(DnOP)外,其余5种PAEs化合物均有不同程度的超标,其中DnBP、邻苯二甲酸二甲酯(DMP)和邻苯二甲酸二乙酯(DEP)3种化合物超标率较高.广东省典型区域农业土壤受到不同程度的PAEs污染.  相似文献   

12.
The possibility of remediating contaminated soils though the use of high biomass-generating, native plant species capable of removing heavy metals is receiving increased attention. The cadmium (Cd) accumulation capacities of the native Mediterranean, perennial shrubs Atriplex halimus, Phyllirea angustifolia, Rhamnus alaternus and Rosmarinus officinalis were tested by growing transplanted specimens in a pine bark compost substrate (pH 5.6) contaminated with 100 mg Cd kg(-1). After 70 days, only R. alaternus showed reduced growth. The increase in biomass seen in all the test species enhanced the phytoextraction of Cd. However, the species behaved as metal excluders, except for the halophyte A. halimus, which behaved as an indicator plant. In this species the leaf Cd concentration reached 35 mg Cd kg(-1), with the shoot responsible for some 86% of total Cd accumulation. Atriplex halimus showed the highest bioconcentration factor (BCF) (0.36) and leaf Cd transport index (1.68); consequently, this species showed the highest Cd phytoextraction capacity.  相似文献   

13.
The application of vetiver grass (Chrysopogon zizaniodes) for phytoremediation of heavy metal contaminated soils can be promoted by economic return through essential oil production. Four levels of lead (0, 500, 2000, and 8000 mg kg(-1) dry soil), copper (0, 100, 400, and 1600 mg kg(-1) dry soil) and zinc (0, 400, 1600, and 6400 mg kg(-1) dry soil) were used to study their effects on vetiver growth, essential oil composition and yield. This study also investigated the effect of nitrogen concentrations on vetiver oil yield. Vetiver accumulated high concentrations of Pb, Cu and Zn in roots (3246, 754 and 2666 mg kg(-1), respectively) and small amounts of contaminants in shoots (327, 55, and 642 mg kg(-1), respectively). Oil content and yield were not affected at low and moderate concentrations of Cu and Zn. Only the application of Pb had a significant detrimental effect on oil composition. Extraction of vetiver essential oils by hydrodistillation produced heavy metal free products. High level of nitrogen reduced oil yields. Results show that phytoremediation of Cu and Zn contaminated soils by vetiver can generate revenue from the commercialization of oil extracts.  相似文献   

14.
Phytoremediation is a new ecological and cost-effective technology applied for cleaning heavy metals and total petroleum hydrocarbon contaminated (TPH-contaminated) soils. This study was conducted to evaluate the potential of milk thistle (Silybum marianum) to phytoremediate cadmium (Cd (II)) from contaminated soils. To this end, the investigators applied a completely randomized design with the factorial arrangement and four replications. The results indicated that all the evaluated parameters of S. Marianum, including shoot and root fresh and dry weight, as well as shoot and root Cd, were significantly influenced by Cd (II) concentration and diesel oil (DO). The Cd-contaminated soil showed minor declining effects on the produced plant biomass, whereas the DO-contaminated soil had more inhibitory effects. Moreover, the soil contaminated with both Cd and DO led to adverse effects on the plant biomass. The shoot and root Cd concentration had an increasing trend in the presence of DO as the bioconcentration factor (BCF) by 1.740 (+90.78%), 1.410 (+36.89%), 2.050 (+31.41%), 1.68 (+32.28%), and 1.371 (+22.41%) compared to the soil without DO at Cd (II) concentrations of 20, 40, 60, 80, and 100 mg/kg, respectively. Biological accumulation coefficient also showed the same trend as the BCF. In all the treatments, the translocation factor was >1. Therefore, it was demonstrated that milk thistle had high potential for transferring Cd from root to shoot and reducing its concentration in the soil. Moreover, the study revealed that milk thistle had high potential for absorbing Cd in the soil contaminated with Cd and DO.  相似文献   

15.
红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征   总被引:13,自引:0,他引:13  
为了探讨我国亚热带红壤丘陵区不同利用方式下土壤有机碳(SOC)和土壤微生物生物量碳(SMB-C)含量的特征,在湖南省桃源县选取典型样区,通过密集取样,分析了红壤丘陵景观单元内水田、旱地、林地、果园4种典型利用方式下表层土壤(0~20 cm)SOC和SMB-C含量.结果表明,典型红壤丘陵景观单元中SOC含量高低的顺序为水田(16.0 g·kg-1)>旱地(11.2 g·kg-1) >果园(9.5 g·kg-1)>林地(8.4 g·kg-1),SMB-C含量则为水田(830 mg·kg-1)>旱地(361 mg·kg-1)>林地(200 mg·kg-1)>果园(186 mg·kg-1),且在不同利用方式下SOC与SMB-C均呈极显著正相关(P<0.01),说明本研究区内各土地利用类型的土壤SMB-C含量变化可以敏感地指示SOC的动态.研究结果还表明,将我国亚热带红壤丘陵林地开垦为果园或耕地后,表层土壤 SOC含量不可能降低.  相似文献   

16.
This study assessed the distribution and availability of plant uptake of Zn, Pb, and Cd present in an abandoned mine at Ingurtosu, Sardinia (Italy). Geological matrix samples (sediments, tailings, and soil from a nearby pasture site) and samples of the predominant plant species growing on sediments and tailings were collected. Mean values of total Zn, Pb and Cd were respectively (mg kg(-1)) 7400, 1800, and 56 in tailings, 31000, 2900, and 100 in sediments, and 400, 200, and 8 in the pasture soil. The metal concentration values were high even in the mobile fractions evaluated by simplified sequential extraction (Zn 7485-103, Pb 1015-101, Cd 47-4 mg kg(-1)). Predominant native species were identified and analyzed for heavy metal content in various tissues. Among the plant species investigated Inula viscosa, Euphorbia dendroides, and Poa annua showed the highest metal concentration in aboveground biomass (mean average of Zn: 1680, 1020, 1400; Pb: 420, 240, 80; Cd: 28, 7, 19 mg kg(-1), respectively). The above mentioned species and A. donax could be good candidates for a phytoextraction procedure. Cistus salvifolius and Helichrysum italicus generally showed behavior more suitable for a phytostabilizer.  相似文献   

17.
A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.  相似文献   

18.
Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 micromol kg(-1)), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 micromol kg(-1)), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 micromol kg(-1)), and traces of NDAB (3.8 micromol kg(-1)). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 +/- 22 micromol kg(-1)) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.  相似文献   

19.
采用贵州黄壤、石灰土和浙江水稻土,通过盆栽试验探讨了在3种土壤上施用含不同浓度重金属的污泥对小麦、水稻生长及锌(Zn)镉(Cd)吸收性的影响.结果表明: 不同土壤施用同种污泥所产生的重金属污染风险不同,在黄壤和水稻土上施用高浓度重金属污泥对作物的污染风险较高.一次施用Zn、Cd浓度分别为1789、8.47 mg·kg-1的污泥1.6%,使黄壤小麦籽粒中Zn、Cd浓度分别达109、0.08 mg·kg-1;第二次施用后种植水稻,糙米中Zn、Cd浓度达52.0、0.54 mg·kg-1.而施用污泥后石灰性土壤的两种作物其可食部分均无重金属污染风险.土壤醋酸铵提取态Zn是影响麦粒和糙米中Zn浓度的主要因素,而土壤醋酸铵提取态Cd对麦粒和糙米中Cd浓度无明显影响.施用高浓度重金属污泥使3种土壤Zn、Cd全量显著提高,且两次施用后土壤全量Zn均超过国家土壤环境质量二级标准.  相似文献   

20.
Using hyperaccumulator plants to phytoextract soil Ni and Cd   总被引:2,自引:0,他引:2  
Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd phytoextraction, but annual removals are much lower than the best T. caerulescens. Improved cultivars with higher yields and retaining this remarkable Cd phytoextraction potential are being bred using normal plant breeding techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号