首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of tetraphenylboron (TPB), an activator of a membrane transport of lipophilic cations, on the inhibition of mouse liver mitochondrial respiration induced by a neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+), and by some structurally related compounds was studied. Of the compounds tested, MPP+ and 4-phenylpyridine (4-PP) significantly inhibited the respiration in an ADP-activated oxidation of substrates (state 3). TPB, dose-dependently, shortened the lag time of MPP+-induced inhibition and thus lowered the concentrations of MPP+ for the inhibition. However, TPB, even at the high concentration (10 μM), did not significantly affect 4-PP-induced inhibition. Carbonyl-cyanide-m-chlorophenylhydrazone (CCCP) blocked the respiratory inhibition by MPP+, independent of K+ concentration in the medium, and valinomycin blocked the inhibition only in the medium containing high K+ concentration. Determination of the intramitochondrial MPP+ concentration revealed about 1000-fold concentrated MPP+ from that in the medium during the incubation with TPB, indicative of potentiation of MPP+ transport into mitochondria by TPB. This might account for the enhancement of respiratory inhibition by MPP+. In the case of 4-PP, it will penetrate the mitochondrial membrane and intrinsically inhibit the respiration, but cannot accumulate in mitochondria. The present results indicate that, although the inhibitory potency of MPP+ per se is similar to 4-PP, MPP+ will be highly concentrated within mitochondria by the membrane potential, as the drive force for its transport.  相似文献   

2.
Abstract: The evidence is compelling that free radicals, plus increases in free cytosolic Ca2+ and Na+, figure prominently in neuronal death after exposure to glutamate and dicarboxylic excitotoxins such as NMDA and kainate. However, neither the source of these radicals nor the direct connection between Ca2+ mobilization and radical production has been well defined. Electron paramagnetic resonance studies reported here indicate that intact mitochondria isolated from adult rat cerebral cortex and cerebellum generate extremely reactive hydroxyl (•OH) radicals, plus ascorbyl and other carbon-centered radicals when exposed to 2.5 µ M Ca2+, 14 m M Na+, plus elevated ADP under normoxic conditions, circumstances that prevail in the cytoplasm of neurons during excitotoxin-induced neurodegeneration. In a feed-forward cycle, exposure of isolated mitochondria to •OH significantly increases subsequent radical production five- to 16-fold (average = 8.8 ± 1.6 SE, n = 6, p > 0.01) with succinate as substrate, and also selectively impairs function of NADH-CoQ dehydrogenase activity (electron transport complex 1). These effects are also reflected by respiration rates that are reduced 48% with complex 1 substrates, but increased 27% with complex 2 substrate, after •OH exposure. Comparable complex 1 dysfunction is observed in mitochondria isolated from the substantia nigra of Parkinson's disease patients, from platelets of Huntington's disease patients, and from neocortex of Alzheimer's disease patients. Mitochondrial radical production provides a testable model, based on oxyradical toxicity, oxidative enzyme inactivation, and mitochondrial dysfunction, for the final common pathway of neuronal necrosis during excitotoxicity, and in a host of neurodegenerative disorders.  相似文献   

3.
Sodium terephthalate was shown to be a new robust and sensitive chemical trap for highly reactive oxygen species (hROS), which lacks the drawbacks of the salicylic acid method. Reaction of the almost non-fluorescent terephthalate (TA2−) with hydroxyl radicals or ferryl-oxo species resulted in the stoichiometric formation of the brilliant fluorophor, 2-hydroxyterephthalate (OH-TA). Neither hydrogen peroxide nor superoxide reacts in this system. This procedure was validated for determining hROS formation during microdialysis under in vivo conditions as well as by in vitro studies. The detection limit of OH-TA in microdialysis samples was 0.5 fmol/μL. Derivatization of samples with o- phthalaldehyde, for amino acid detection, had no effect on OH-TA fluorescence, which could easily be resolved from the amino acid derivatives by HPLC, allowing determination in a single chromatogram. Use of terephthalate in microdialysis experiments showed the neurotoxin kainate to evoke hROS formation in a dose-dependent manner. The presence of TA2− in the perfusion fluid did not affect basal or evoked release of aspartate, glutamate, taurine and GABA. Assessment of cell death ' ex vivo' showed TA2− to be non-toxic at concentrations up to 1 mM. The in vitro results in the Fenton system (Fe2+ + H2O2) indicate a mechanism whereby TA2− forms a primary complex with Fe2+ followed by an intramolecular hydroxylation accompanied by intramolecular electron transfer.  相似文献   

4.
Prior to comparative studies on the reactivity of various copper complexes with respect to OH radicals, the influence of free Cu2+ ions on the superoxide-independent generation of OH radicals through Fenton assays and water gamma radiolysis has been tested in the present work.

Cu2+ ions have been shown to behave in a distinct manner towards each of these two production systems. As was logically expected from the noninvolvement of copper in OH- radical production through gamma radioiysis, no influence of Cu2+ ions has been observed on the amount of radicals detected in that case. In contrast, Cu2+ ions do influence OH- radical generation through iron-driven Fenton reactions, but differently depending on copper concentration.

When present in high concentrations, Cu2+ ions significantly contribute to OH- radical production, which confirms previous observations on the reactivity of these in the presence of hydrogen peroxide. At lower levels corresponding to copper/iron ratios below unity on the contrary, Cu2+ ions behave as inhibitors of the OH- production in a pH-dependent manner over the 1-6 range investigated: the lower the pH, the greater the inhibition.

The possible origin of this previously unreported inhibitory effect is discussed.  相似文献   

5.
Allopurinol has been employed as a “specific” inhihitor of xanthine oxidase in studies of hypoxic/ reoxygenation injury. Pulse radiolysis was used to establish rate constants for the reactions of allopurinol and its major metabolite oxypurinol with hydroxyl radicals: values were (1.45 ± 0.241 × 109 M-1 s-1 for allopurinol and (4.95 ± 0.84) × 109 M-1 s-1 for oxypurinol. These rate constants show that, in view of the amounts of allopurinol that have been used in animal studies. hydroxyl radical scavenging by this molecule could contribute to its biological actions. especially if animals are pre-treated with allopurinol. so allowing oxypurinol to form. The ability of allopurinol to protect tissues not containing xanthine oxidase against reoxygenation injury may be related to radical scavenging by allopurinol and oxypurinol.  相似文献   

6.
In vivo bilateral microdialysis in the rat striatum was used to investigate hydroxyl radical formation under basal conditions and after intrastriatal administration of the neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). After a short equilibration period, 4-hydroxybenzoate (4HBZ), which scavenges hydroxyl radicals to produce 3,4-dihydroxybenzoate (34DHB), was injected intraperitoneally 15 min before infusion of MPP+. To evaluate the enzymatic contribution to hydroxyl radical formation, two other series of microdialyses were performed following administration of monoamine oxidase B inhibitors, either 1-deprenyl (selegiline) or MDL 72,974A [(E)-2-(4-fluorophenethyl)-3-fluoroallylamine hydrochloride]. Microdialysate samples were analyzed by high-performance liquid chromatography for catecholamines, 3,4-dihydroxyphenylacetate (DOPAC), homovanillate (HVA), along with the hydroxyl radical adduct, 34DHB and its precursor, 4HBZ. MPP+ administration resulted in a massive release of dopamine along with a decrease in DOPAC and HVA in all three groups. A striking effect in all three groups was noted in which MPP+ resulted in a decrease in interstitial 4HBZ to < 50% of the non-MPP+ -treated side. In absolute terms, the amount of 34DHB produced was low but similar in all three groups, even after unilateral MPP+ infusion. When 34DHB was normalized to 4HBZ release to account for differences in precursor availability, there were no significant differences in the 34DHB/4HBZ ratios either with or without MAO inhibitor treatment or after local MPP+ infusion. Systemic 4HBZ administration appears to result predominantly in intra-cellular sampling of hydroxyl radicals which produces different results from local infusion of trapping agents such as salicylate.  相似文献   

7.
The yield of 2,3- and 2,5-dihydroxybenzoates (dHB's) from the reaction of .OH radicals with salicylate (SA) ions has been measured as a function of pH and in the presence of oxidants. Under steady-state radiolysis conditions, the production of these products occurs via the reactions .OH + SA----HO-SA. (radical adduct) HO-SA. H+.OH+----2-carboxyphenoxyl radical (SA.) + H2O HO-SA. + SA.----2,3-/2,5-dHB + SA The addition of the oxidants O2, Fe3+ edta, or Fe(CN)63- increases the relative yield of 2,5-dHB/2,3-dHB from about 0.2 to 1. A model to account for this effect is presented. Steady-state radiolyses of 3- and 4-hydroxybenzoate give dihydroxybenzoate products consistent with the phenol group being an ortho-para director in the electrophilic attack of the hydroxyl radical on the aromatic ring. A comparison of product distributions from the reaction of ferrous edta with hydrogen peroxide using salicylate as a scavenger strongly suggests that the same hydroxyl radical adducts are formed as in the radiation experiments.  相似文献   

8.
The aim of this work was to study the proliferation pathological perturbations of cultured chondrocytes in response to menadione, an oxygen free radicals producing drug. Rabbit articular chondrocytes in monolayer culture were treated with 10-5, 1.5.M-5 and 2.10-5M of menadione during three days. A dose dependent decrease of the proliferative capacity was observed. Flow cytometry analysis revealed a perturbation of the cell cycle progression consisting in an accumulation of cells in the S and G2 + M phases. This growth perturbation was due to oxygen radicals production since a treatment with catalase suppressed these toxic effects. Furthermore, to identify oxygen derived radicals in the cellular suspension of cultures treated with menadione, we used a technique of spin-trapping coupled with electron spin resonance (ESR). The ESR signal corresponding to the DMPO hydroxyl radical adduct (DMPO-OH) has been detected. The spectra observation indicated the actual production of hydroxyl radical. However, superoxide anions have not been identified; this fact can be explained by the low reactivity of these anions with DMPO and by the decomposition of signal DMPO-OOH to DMPO-OH.  相似文献   

9.
Spin trapping of short-lived R. radicals is done by use of N-tert-butylhydroxylamine (1) and H2O2. The hydroxylamine is oxidized to the radical t-BuN(O)H (2) which is converted into the spin trap 2-methyl-2-nitrosopropane (3). Simultaneously, hydroxyl radicals. OH are formed from H2O2. The latter radical species abstracts hydrogen atoms from suitable molecules HR to give R. radicals, which are trapped with the formation of aminooxyl radicals, i. e., t-BuN(O)R (4) detectable by EPR spectroscopy. The reaction is enhanced by the presence of iron ions. The cleavage of H2O2 into. OH radicals is considered to involve both a radical-driven (t-BuN(O)H 2) and an iron-driven Fenton reaction.  相似文献   

10.
Abstract: We have used microdialysis to establish an experimental model to characterize mechanisms whereby released substances cause secondary damage in spinal cord injury. We use this model here to characterize damaging effects of the hydroxyl radical (OH') in vivo in the spinal cord. OH'was generatad in vivo by pumping H2O2 and FeCI2/EDTA through parallel microdialysis fibers inserted into the spinal cord. These agents mixed in the tissue to produce OH'by Fenton's reaction. Two types of control experiments were also conducted, one administering only 5 m M H2O2 and the other only 0.5 m M FeCI2/0.82 m M EDTA. During administration of these chemicals, electrical conduction was recorded as one test for deterioration. OH'blocked conduction completely in 2.5-5 h and Fe2+/EDTA partly blocked conduction, but H2O2 alone did not cause detectable blockage. Histological examination supported the hypothesis that neurons were killed by OH', as Fe2+/EDTA and H2O2 alone did not destroy significant numbers of neurons. OH', H2O2, and Fe2+ all caused gradual increases in extracellular amino acid levels. These results are consistent with Fe2+-catalyzed free radical generation playing a role in tissue damage upon spinal cord injury.  相似文献   

11.
Trypanosoma cruzi trypanothione reductase (TR) was irreversibly inhibited by peroxidase/H2O2/phenothiazine (PTZ) systems. TR inactivation depended on (a) time of incubation with the phenothiazine system; (b) the peroxidase nature and (c) the PTZ structure and concentration. With the most effective systems, TR inactivation kinetics were biphasic, with a relatively fast initial phase during which about 75% of the enzyme activity was lost, followed by a slower phase leading to total enzyme inactivation. GSH prevented TR inactivation by the peroxidase/H2O2/PTZ systems. Production of PTZ cation radicals by PTZ peroxidation was essential for TR inactivation. Horseradish peroxidase, leukocyte myeloperoxidase (MPO) and the pseudo-peroxidase myoglobin (Mb) were effective catalysts of PTZ production. Promazine, thioridazine, chlorpromazine, propionylpromazine prochlorperazine, perphenazine and trimeprazine were effective constituents of the HRP/H2O2/PTZ system. The presence of substituents at the PTZ nucleus position 2 exerted significant influence on PTZ activity, as shown by the different effects of 2-trifluoromethyl and 2-H or 2-chlorophenothiazines. The PTZ cation radicals disproportionation regenerated the non-radical PTZ molecule and produced the PTZ sulfoxide that was inactive on TR. Thiol compounds including GSH interacted with PTZ cation radicals transferring an electron from the sulfide anion to the PTZ, thus nullifying the PTZ biological and chemical activities.  相似文献   

12.
The reaction of FeII oxalate with hydrogen peroxide and dioxygen was studed for oxalate concentrations up to 20 mM and pH 2-5, under which conditions mono- and bis-oxalate comlexes (FeII(ox) and FeII(ox)22-) and uncomplexed Fe2+ must be considered. The reaction of FeII oxalate with hydrogen peroxide (Fe2+ + H2O2 → Fe3+ + *OH + OH-) was monitored in continuous flow by ESR with t-butanol as a radical trap. The reaction is much faster than for uncomplexed Fe2+ and a rate constant, k = 1 × 104 M-1 s-1 is deduced for FeII(ox). The reaction of FeII oxalate with dioxygen is strongly pH dependent in a manner which indicates that the reactive species is FeII(ox)22-, for which an apparent second order rate constant, k = 3.6 M-1 s-1, is deduced. Taken together, these results provide a mechanism for hydroxyl radical production in aqueous systems containing FeII complexed by oxalate. Further ESR studies with DMPO as spin trap reveal that reaction of FeII oxalate with hydrogen peroxide can also lead to formation of the carboxylate radical anion (CO2*-), an assignment confirmed by photolysis of FeIII oxalate in the presence of DMPO.  相似文献   

13.
探究siRNA敲减沉默信息调节因子2(SIRT2)对1-甲基-4-苯基吡啶离子(MPP+)诱导的帕金森病细胞模型细胞损伤的影响和机制。CCK-8法检测不同浓度MPP+处理对体外培养小鼠海马神经元HT-22细胞生存率的影响。将细胞分为对照组、MPP+最佳浓度处理组(1 mmol/L MPP+处理组)、阴性转染组(对照组基础上转染SIRT2阴性序列)、SIRT2 siRNA处理组(损伤组基础上转染SIRT2 siRNA)。观察各组细胞凋亡情况,检测凋亡相关蛋白(Bcl-2、Bax、Caspase-9)、线粒体分裂及融合相关蛋白(Drp1、Fis1、OPA1、Mfn1、Mfn2)。与对照组相比,MPP+处理组细胞抑制率均升高,细胞抑制率随MPP+浓度增加而逐渐增加(P<0.05)。与SIRT2 siRNA转染组相比,损伤组Bax、Caspase-9、Drp1、Fis1蛋白表达和细胞凋亡率升高,Bcl-2、Mfn1、Mfn2蛋白表达降低(P<0.05)。SIRT2在MPP+诱导帕金森病细胞模型中表达升高,抑制SIRT2可减轻MPP+诱导帕金森病细胞模型中细胞凋亡并促进线粒体融合,从而对神经元具有一定的保护作用。  相似文献   

14.
Oxygen radicals have been implicated as important mediators of myocardial ischemic and reperfusion injury. A major product of oxygen radical formation is the highly reactive hydroxyl radical via a biological Fenton reaction. The sarcoplasmic reticulum is one of the major target organelles injured by this process. Using a oxygen radical generating system consisting of dihydroxyfumarate and Fe3+-ADP, we studied lipid peroxidation and Ca2+-ATPase of cardiac sarcoplasmic reticulum. Incubation of sarcoplasmic reticulum with dihydroxyfumarate plus Fe3+-ADP significantly inhibited enzyme activity. Addition of superoxide dismutase, superoxide dismutase plus catalase (15 micrograms/ml) or iron chelator, deferoxamine (1.25-1000 microM) protected Ca2+-ATPase activity. Time course studies showed that this system inhibited enzyme activity in 7.5 to 10 min. Similar exposure of sarcoplasmic reticulum to dihydroxyfumarate plus Fe3+-ADP stimulated malondialdehyde formation. This effect was inhibited by superoxide dismutase, catalase, singlet oxygen, and hydroxyl radical scavengers. EPR spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide verified production of the hydroxyl radical. The combination of dihydroxyfumarate and Fe3+-ADP resulted in a spectrum of hydroxyl radical spin trap adduct, which was abolished by ethanol, catalase, mannitol, and superoxide dismutase. The results demonstrate the role of oxygen radicals in causing inactivation of Ca2+-ATPase and inhibition of lipid peroxidation of the sarcoplasmic reticulum which could possibly be one of the important mechanisms of oxygen radical-mediated myocardial injury.  相似文献   

15.
The debate about the toxicity of L-DOPA to dopaminergic neurons has not been resolved. Even though enzymatic and nonenzymatic metabolism of L-DOPA can produce hydrogen peroxide and oxygen free radicals, there has been controversy as to whether L-DOPA generates an oxidant stress in vivo. This study determined whether acute or repeated administration of L-DOPA caused in vivo production of hydroxyl radicals in striatum and other brain regions in rats with a unilateral 6-hydroxydopamine lesion of the dopaminergic nigrostriatal projections. Salicylate trapping combined with in vivo microdialysis provided measurements of extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA) in striatum following L-DOPA administration systemically (100 mg/kg, i.p.) or by intrastriatal perfusion (1 mM, via the microdialysis probe). Tissue concentrations of 2,3-DHBA and salicylate were also measured in striatum, ventral midbrain, and cerebellum following repeated administration of L-DOPA (50 mg/kg, i.p., once daily for 16 days). In each instance, treatment with L-DOPA did not increase 2,3-DHBA concentrations, regardless of the nigrostriatal dopamine system's integrity. When added to the microdialysis perfusion medium, L-DOPA resulted in a significant decrease in the striatal extracellular concentration of 2,3-DHBA. These results suggest that administration of L-DOPA, even at high doses, does not induce hydroxyl radical formation in vivo and under some conditions may actually diminish hydroxyl radical activity. Furthermore, prior damage to the nigrostriatal dopamine system does not appear to predispose surviving dopaminergic neurons to increased hydroxyl radical formation following L-DOPA administration. Unlike L-DOPA, systemic administration of methamphetamine (10 mg/kg, s.c.) produced a significant increase in the concentration of 2,3-DHBA in striatal dialysate, suggesting that increased formation of hydroxyl radicals may contribute to methamphetamine neurotoxicity.  相似文献   

16.
In our search to establish a reference ·OH production system with respect to which the reactivity of copper(II) complexes could then be tested, the influence of free Cu2+ ions on the Cu+/H2O2 reaction has been investigated.

This influence depends on the CCu2+/CCu+ ratio. At low Cu2+ concentrations, ·OH damage to various detector molecules decreases with increasing Cu2+ concentrations until CCu2+/CCu+ reaches unity. Above this value, ·OH damage increases sharply until CCu2+/CCu+ becomes equal to 5 with salicylate and 2 with deoxyribose, ratios for which the protective effect of Cu2+ cancels. Finally, at higher concentrations, Cu2+ ions logically add their own ·OH production to that normally expected from Cu+ ions. The possible origin of this unprecedented alternate effect has been discussed. The possible influence of Cu+ ions on the generation of ·OH radicals by water gamma radiolysis has also been tested and, as already established for Cu2+ in a previous work, shown to be nonexistent. This definitely confirms that either form of ionised copper cannot scavenge ·OH radicals in the absence of a Iigand.  相似文献   

17.
Various in vitro experiments have indicated that oxygen-derived free radicals may contribute to excitotoxic neuronal death. In the present study we induced excitotoxicity in rat striatum by perfusing glutamate at a high concentration through a microdialysis probe. We observed an increased formation of hydroxyl radicals (˙OH) during the perfusion of the excitotoxin and an extensive striatal lesion 24 h after the insult. The spin trap, -phenyl-N-tert-butylnitrone (PBN), attenuated both hydroxyl radical levels and the volume of the lesion. This result suggests that the neuroprotection may be due to a free radical scavenging mechanism. It also implies that PBN may be used in pathological situations involving excitotoxicity such as stroke, brain trauma, and chronic neurologic diseases.  相似文献   

18.
The effect of different oxygen radical-generating systems on NAD(P)H was determined by incubating the reduced forms of the pyridine coenzymes with either Fe2+-H2O2 or Fe3+-ascorbate and by analyzing the reaction mixtures using a HPLC separation of adenine nucleotide derivatives. The effect of the azo-initiator 2,2'-azobis(2-methylpropionamidine)dihydrochloride was also tested. Results showed that, whilst all the three free radical-producing systems induced, with different extent, the oxidation of NAD(P)H to NAD(P)+, only Fe2+-H2O2 also caused the formation of equimolar amounts of ADP-ribose(P) and nicotinamide. Dose-dependent experiments, with increasing Fe2+ iron (concentration range 3-180 μM) or H2O2 (concentration range 50-1000 μM), were carried out at pH 6.5 in 50 mM ammonium acetate. NAD(P)+, ADP-ribose(P) and nicotinamide formation increased by increasing the amount of hydroxyl radicals produced in the medium. Under such incubation conditions NAD(P)+/ADP-ribose(P) ratio was about 4 at any Fe2+ or H2O2 concentration. By varying pH to 2.0, 3.0, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0 and 7.4, NAD(P)+/ADP-ribose(P) ratio changed to 5.5, 3.2, 1.8, 1.6, 2.0, 2.5, 3.0, 5.4 and 6.5, respectively. Kinetic experiments indicated that 90-95% of all compounds were generated within 5s from the beginning of the Fenton reaction. Inhibition of ADP-ribose(P), nicotinamide and NAD(P)+ production of Fe2+-H2O2-treated NAD(P)H samples, was achieved by adding mannitol (10-50 mM) to the reaction mixture. Differently, selective and total inhibition of ADP-ribose(P) and nicotinamide formation was obtained by performing the Fenton reaction in an almost completely anhydrous medium, i.e. in HPLC-grade methanol. Experiments carried out in isolated postischemic rat hearts perfused with 50 mM mannitol, showed that, with respect to values of control hearts, this hydroxyl radical scavenger prevented reperfusion-associated pyridine coenzyme depletion and ADP-ribose formation. On the basis of these results, a possible mechanism of action of ADP-ribose(P) and nicotinamide generation through the interaction between NAD(P)H and hydroxyl radical (which does not involve the C-center where “conventional” oxidation occurs) is presented. The implication of this phenomenon in the pyridine coenzyme depletion observed in postischemic tissues is also discussed.  相似文献   

19.
In the present study we show that K+/H+ hydroxyl-containing ionophores lasalocid-A (LAS) and nigericin (NIG) in the nanomolar concentration range, inhibit Fe2+-citrate and 2,2'-azobis(2-amidinopropane) di-hydrochloride (ABAP)-induced lipid peroxidation in intact rat liver mitochondria and in egg phosphatidyl-choline (PC) liposomes containing negatively charged lipids—dicetyl phosphate (DCP) or cardiolipin (CL)—and KCl as the osmotic support. In addition, monensin (MON), a hydroxyl-containing ionophore with higher affinity for Na+ than for K+, promotes a similar effect when NaCl is the osmotic support. The protective effect of the ionophores is not observed when the osmolyte is sucrose. Lipid peroxidation was evidenced by mitochondrial swelling, antimycin A-insensitive O2 consumption, formation of thiobarbituric acid-reactive substances (TBARS), conjugated dienes, and electron paramagnetic resonance (EPR) spectra of an incorporated lipid spin probe. A time-dependent decay of spin label EPR signal is observed as a consequence of lipid peroxidation induced by both inductor systems in liposomes. Nitroxide destruction is inhibited by buty-lated hydroxytoluene, a known antioxidant, and by the hydroxyl-containing ionophores. In contrast, vali-nomycin (VAL), which does not possess alcoholic groups, does not display this protective effect. Effective order parameters (Seff), determined from the spectra of an incorporated spin label are larger in the presence of salt and display a small increase upon addition of the ionophores, as a result of the increase of counter ion concentration at the negatively charged bilayer surface. This condition leads to increased formation of the ion-ionophore complex, the membrane binding (uncharged) species. The membrane-incorporated complex is the active species in the lipid peroxidation inhibiting process. Studies in aqueous solution (in the absence of membranes) showed that NIG and LAS, but not VAL, decrease the Fe2+-citrate-induced production of radicals derived from piperazine-based buffers, demonstrating their property as radical scavengers. Both Fe2+-citrate and ABAP promote a much more pronounced decrease of LAS fluorescence in PC/CL liposomes than in dimyristoyl phosphatidyl-choline (DMPC, saturated phospholipid)-DCP liposomes, indicating that the ionophore also scavenges lipid peroxyl radicals. A slow decrease of fluorescence is observed in the latter system, for all lipid compositions in sucrose medium, and in the absence of membranes, indicating that the primary radicals stemming from both inductors also attack the ionophore. Altogether, the data lead to the conclusion that the membrane-incorporated cation complexes of NIG, LAS and MON inhibit lipid peroxidation by blocking initiation and propagation reactions in the lipid phase via a free radical scavenging mechanism, very likely due to the presence of alcoholic hydroxyl groups in all three molecules and to the attack of the aromatic moiety of LAS.  相似文献   

20.
The NADPH-supported enzymatic reduction of molecular oxygen by ferredoxin-ferredoxin:NADP+ oxidoreductase was investigated. The ESR spin trapping technique was employed to identify the free radical metabolites of oxygen. The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to trap and identify the oxygen-derived free radicals. [17O]Oxygen was employed to demonstrate that the oxygen-centered radicals arose from molecular oxygen. From the data, the following scheme is proposed: (Formula:see text). The formation of the free hydroxyl radical during the reduction of oxygen was demonstrated with quantitative competition experiments. The hydroxyl radical abstracted hydrogen from ethanol or formate, and the resulting scavenger-derived free radical was trapped with known rate constants. If H2O2 was added to the enzymatic reaction, a stimulation of the production of the hydroxyl radical was obtained. This stimulation was manifested in both the concentration and the rate of formation of the DMPO/hydroxyl radical adduct. Catalase was shown to inhibit formation of the hydroxyl radical adduct, further supporting the formation of hydrogen peroxide as an intermediate during the reduction of oxygen. All three components, ferredoxin, ferredoxin:NADP+ oxidoreductase, and NADPH, were required for reduction. Ferredoxin:NADP+ oxidoreductase reduces ferredoxin, which in turn is responsible for the reduction of oxygen to hydrogen peroxide and ultimately the hydroxyl radical. The effect of transition metal chelators on the DMPO/hydroxyl radical adduct concentration suggests that the reduction of chelated iron by ferredoxin is responsible for the reduction of hydrogen peroxide to the hydroxyl radical via Fenton-type chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号