首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed a plasmid which contains 22 copies of a 147 bp DNA fragment which contains the major DNA gyrase cleavage site from plasmid pBR322 (located at base-pair 990). We have found that this fragment is efficiently bound and cleaved by gyrase. The selectivity for the sequence corresponding to position 990 in pBR322 is maintained even when this site is located only 15 bp from one end of the 147 bp fragment. A strategy for the specific incorporation of a single thiophosphoryl linkage into the 147 bp fragment has been developed, and gyrase has been shown to catalyse efficient cleavage of fragments bearing phosphorothioate linkages at the gyrase cleavage site in one or both strands.  相似文献   

2.
3.
Summary Illegitimate recombination dependent on DNA gyrase in a cell-free system has previously been described. We have now mapped DNA gyrase cleavage sites in the vicinity of known recombination sites in pBR322. Among five recombination sites examined, three were found to coincide with a DNA gyrase cleavage site. This result suggests that the cleavage of DNA by DNA gyrase has a central role in the recombination process.  相似文献   

4.
pBR322 DNA, linearized by lysis of an oxolinic acid-treated culture of Escherichia coli strain DK6recA- (pBR322) with sodium dodecyl sulfate, was purified, treated with DNA polymerase in the presence of the four deoxynucleoside triphosphates, and ligated to DNA linkers containing the XhoI recognition sequence. Most of the drug-resistant colonies resulting from transformation of E. coli with this material bore plasmids that appeared by restriction enzyme analysis to differ from pBR322 only by the introduction of an XhoI site. The XhoI sites in plasmids from 93 transformants were distributed unevenly around the pBR322 map. Maxam-Gilbert DNA sequence analysis of 36 of these plasmids, labeled at the 5' termini of the XhoI sites, revealed that 29 of them contained, in addition to the XhoI linker, a duplication of four base-pairs of the pBR322 sequence surrounding the linker. Therefore, oxolinic acid-induced linearization must have resulted in 5'-terminal extensions of four bases, the configuration known to result from oxolinic acid-induced DNA cleavage by DNA gyrase in vitro. The sequence data thus allowed the determination of the precise point at which linearization occurred, apparently by the abortion of a gyrase-DNA covalent intermediate that existed in vivo. When the 19 different sites of the 29 plasmids were compared, the following set of rules could be derived: (formula; see text) where N is any nucleotide, R is a purine, and Y is a pyrimidine. Cleavage occurred at the line between the eighth and ninth positions from the left. The parenthetical G and T were preferred secondarily to T and G, respectively, whereas T and G in the 13th position from the left were equally preferred. Several of these rules are similar to those proposed previously based on several in vitro gyrase cleavage sites. Some of our rules show dyad symmetry around the axis midway between the cleavage points in the two strands, while others are distinctly asymmetric.  相似文献   

5.
Replication of bacteriophage Mu DNA, a process requiring efficient synapsis of the prophage ends, takes place within the confines of the Escherichia coli nucleoid. Critical to ensuring rapid synapsis is the function of the SGS, a strong gyrase site, located at the centre of the Mu genome. Replacement of the SGS by the strong gyrase sites from pSC101 or pBR322 fails to support efficient prophage replication. To probe the unique SGS properties we undertook a biochemical analysis of the interaction of DNA gyrase with the Mu SGS, pSC101 and pBR322 sites. In binding and cleavage assays the order of efficacy was pSC101 > Mu SGS > pBR322. However, in supercoiling assays the Mu SGS (cloned into pUC19) exhibited a strong enhancement of gyrase-catalysed supercoiling over pUC19 alone; the pSC101 site showed none and the pBR322 site gave a moderate improvement. Most striking was the Mu SGS-dependent increase in processivity of the gyrase reaction. This highly processive supercoiling coupled with efficient binding may account for the unique biological properties of the SGS. The results emphasize the importance of the DNA substrate as an active component in modulating the gyrase supercoiling reaction, and in determining the biological roles of specialized gyrase sites.  相似文献   

6.
We have developed a procedure which permits the mapping of DNA gyrase cleavage sites in vivo. Addition of oxolinic acid, an inhibitor of DNA gyrase, to growing cells of Escherichia coli containing the plasmid pBR322 resulted in double-strand cleavage of DNA, and allowed the isolation of significant quantities of linearized plasmid DNA after lysis of treated cells with sodium dodecyl sulfate. Initially the linear product was purified from agarose gels, cleaved by restriction endonucleases, and then subjected to Southern hybridization analysis using defined DNA probes. A number of distinct cleavage sites, used with varying degrees of efficiency, were identified within pBR322 using this simple procedure. To achieve greater resolution and to improve sensitivity, we then employed an electroblotting procedure to transfer DNA fragments from acrylamide gels onto nylon membranes. This alternative method does not require the isolation of the linearized product before performing the mapping procedure. The improved resolution obtained from acrylamide gels and the superior binding properties of the nylon membranes have allowed us to accurately map 74 distinct oxolinic acid-induced cleavage sites within pBR322. The significance of these findings in light of previously reported studies in vitro, as well as the possible role of such sites during illegitimate recombination, are discussed.  相似文献   

7.
A key step in the supercoiling reaction is the DNA gyrase-mediated cleavage and religation step of double-stranded DNA. Footprinting studies suggest that the DNA gyrase binding site is 100-150 bp long and that the DNA is wrapped around the enzyme with the cleavage site located near the center of the fragment. Subunit A inhibitors interrupt this cleavage and resealing cycle and result in cleavage occurring at preferred sites. We have been able to show that even a 30 bp DNA fragment containing a 20 bp preferred cleavage sequence from the pBR322 plasmid was a substrate for the DNA gyrase-mediated cleavage reaction in the presence of inhibitors. This DNA fragment was cleaved, although with reduced efficiency, at the same sites as a 122 bp DNA fragment. A 20 bp DNA fragment was cleaved with low efficiency at one of these sites and a 10 bp DNA fragment was no longer a substrate. We therefore propose that subunit A inhibitors interact with DNA at inhibitor-specific positions, thus determining cleavage sites by forming ternary complexes between DNA, inhibitors and DNA gyrase.  相似文献   

8.
Simon H  Kittler L  Baird E  Dervan P  Zimmer C 《FEBS letters》2000,471(2-3):173-176
The influence of an eight-ring hairpin DNA minor groove binder on the gyrase mediated DNA supercoiling and cleavage reaction step of the enzyme was investigated. The results demonstrate that supercoiling is affected by the hairpin polyamide in the millimolar concentration range while the enzyme catalyzed cleavage of a 162 bp fragment of pBR322 containing a single strong gyrase site is effectively inhibited at nanomolar concentration. As demonstrated by footprint analysis the latter effect is caused by a specific binding of the hairpin forming polyamide to the enzyme recognition site (GGCC), which indicates that the gyrase activity to produce a double strand break is blocked at this site. The pyrrole-imidazole hairpin polyamide is the most potent inhibitor of the gyrase mediated cleavage reaction compared to other known anti-gyrase active DNA binding agents.  相似文献   

9.
The bacteriophage Mu strong gyrase site (SGS) is required for efficient replicative transposition and functions by promoting the synapsis of prophage termini. To look for other sites which could substitute for the SGS in promoting Mu replication, we have replaced the SGS in the middle of the Mu genome with fragments of DNA from various sources. A central fragment from the transposing virus D108 allowed efficient Mu replication and was shown to contain a strong gyrase site. However, neither the strong gyrase site from the plasmid pSC101 nor the major gyrase site from pBR322 could promote efficient Mu replication, even though the pSC101 site is a stronger gyrase site than the Mu SGS as assayed by cleavage in the presence of gyrase and the quinolone enoxacin. To look for SGS-like sites in the Escherichia coli chromosome which might be involved in organizing nucleoid structure, fragments of E. coli chromosomal DNA were substituted for the SGS: first, repeat sequences associated with gyrase binding (bacterial interspersed mosaic elements), and, second, random fragments of the entire chromosome. No fragments were found that could replace the SGS in promoting efficient Mu replication. These results demonstrate that the gyrase sites from the transposing phages possess unusual properties and emphasize the need to determine the basis of these properties.  相似文献   

10.
We found that transducing phages carrying the gal or bio regions of the Escherichia coli genome were formed during in vitro packaging of endogenous lambda DNA. Structural analysis of the transducing phage genomes indicated that they were formed by abnormal excision of lambda prophage. Formation of transducing phages was stimulated by oxolinic acid, an inhibitor of DNA gyrase, implying that DNA gyrase participates in the abnormal excision of lambda prophage. When pBR322 DNA was added to the reaction mixture, transducing phages into which pBR322 had been inserted were produced at a high frequency. This reaction was also stimulated by oxolinic acid. Sequence analyses revealed that pBR322 is inserted into the sites of abnormal excision of the prophage. These results show that transducing phages can be formed by DNA gyrase-dependent illegitimate recombination in an in vitro system and that secondary recombination takes place frequently at the site where the first recombination occurs.  相似文献   

11.
12.
We have used the technique of hydroxyl radical footprinting to probe the complex between DNA gyrase and a 198 bp DNA fragment containing the preferred gyrase cleavage site from plasmid pBR322. We find that gyrase protects 128 bp from the hydroxyl radical with the central 13 bp (adjacent to the gyrase cleavage site) being most strongly protected. Flanking the central region are arms showing periodic protection from the reagent suggesting a helical repeat of 10.6 bp, consistent with the DNA being wrapped upon the enzyme surface. The presence of 5'-adenylyl-beta,gamma-imidodiphosphate or a quinolone drug causes alteration of the protection pattern consistent with a conformational change in the complex involving one arm of the wrapped DNA. The significance of these results for the mechanism of DNA supercoiling by gyrase is discussed.  相似文献   

13.
Antibacterial quinolones inhibit type II DNA topoisomerases by stabilizing covalent topoisomerase-DNA cleavage complexes, which are apparently transformed into double-stranded breaks by cellular processes such as replication. We used plasmid pBR322 and two-dimensional agarose gel electrophoresis to examine the collision of replication forks with quinolone-induced gyrase-DNA cleavage complexes in Escherichia coli. Restriction endonuclease-digested DNA exhibited a bubble arc with discrete spots, indicating that replication forks had been stalled. The most prominent spot depended upon the strong gyrase binding site of pBR322, providing direct evidence that quinolone-induced cleavage complexes block bacterial replication forks in vivo. We differentiated between stalled forks that do or do not contain bound cleavage complex by extracting DNA under different conditions. Resealing conditions allow gyrase to efficiently reseal the transient breaks within cleavage complexes, while cleavage conditions cause the latent breaks to be revealed. These experiments showed that some stalled forks did not contain a cleavage complex, implying that gyrase had dissociated in vivo and yet the fork had not restarted at the time of DNA isolation. Additionally, some branched plasmid DNA isolated under resealing conditions nonetheless contained broken DNA ends. We discuss a model for the creation of double-stranded breaks by an indirect mechanism after quinolone treatment.  相似文献   

14.
Various antitumor drugs stabilize DNA topoisomerase II-DNA transient covalent complexes. The complexes distribution along pBR322 DNA was shown previously to depend upon the nature of the drug (Tewey et al. (1984) Science 226, 466-468). The position in pBR322 of DNA cleavage by calf DNA topoisomerase II for 115 such sites stabilized by an ellipticine derivative and the relative frequency of cleavage at most of these sites were determined. The nucleotide sequence surrounding the 25 strongest sites was analyzed and the following ellipticine specific consensus sequence was deduced: 5'-ANCNT(A/G)T.NN(G/C)N(A/G)-3' where cleavage occurs at the indicated mark. A thymine is always present at the 3' end of at least one strand of the strong cleavage sites, and the dinucleotide AT or GT at the 3' end of the break plays a major role in the complex stabilisation. The predictive value of cleavage of the consensus was tested for two regions of SV40 DNA and cleavage was indeed detected at the majority of the sites matching the consensus. Some complexes stabilized by ellipticine are resistant to salt dissociation and this property seems to be correlated with the presence of symmetrical sequences in the cleavage site with a center of symmetry staggered relatively to the center of symmetry of cleavage.  相似文献   

15.
16.
用限制性核酸内切酶酶切试验研究了质粒pBR322 DNA经8-MOP及近紫外线作用后损伤部位的碱基顺序特异性。实验研究发现PUVA损伤的DNA在HindⅢ及RsaⅠ识别位置上酶切反应受到严重抑制,而在SphⅠ,EcoRⅠ,PvuⅡ,BamHI,PstⅠ识到位置上抑制轻微。通过对不同识别位置上碱基顺序及其光化学反应敏感性的分析,推断出DNA的TpA顺序可能是最易接受8-MOP光化学反应的部位。  相似文献   

17.
B C Lin  M C Chien    S Y Lou 《Nucleic acids research》1980,8(24):6189-6198
A type II restriction endonuclease Xmn I with a novel site specificity has been isolated from Xanthomonas manihotis. Xmn I does not cleave SV40 DNA, but cleaves phi X174 DNA into three fragments, which constitute 76.61%, 18.08% and 5.31% of the total length of 5386 base pairs, and cleaves pBR322 DNA into two fragments of 55.71% and 44.29% of the entire 4362 base pairs. The nucleotide sequences around the cleavage sites made by Xmn I are not exactly homologous, but they have a common sequence of 5' GAANNNNTTC 3' according to a simple computer program analysis on nucleotide sequences of phi X174 DNA, pBR322 DNA and SV40 DNA. The results suggest that the cleavage site of Xmn I is located within its recognition sequence of 5' GAANNNNTTC 3'.  相似文献   

18.
Seven oligonucleotide primers complementary to the plasmid vector pBR322 at positions adjacent to five of the unique restriction endonuclease cleavage sites (EcoRI, HindIII, BamHI, SalI and PstI) have been chemically synthesized. The polarity of the primers is such that any DNA inserted at one or a combination of two of the above restriction sites may be sequenced by the chain termination method using one of the synthetic DNA primers. One of the primers for sequencing inserts at the PstI site of pBR322 is also complementary to the M13 phage vector designated bla6. This set of universal primers is useful for rapid sequence determination of DNA cloned into pBR322 or M13bla6.  相似文献   

19.
Cleavage of pBR322 DNA I by the restriction endonuclease HinfI is preferentially inhibited at specific HinfI cleavage sites. These sites in pBR322 DNA I have been identified and ordered with respect to the frequency with which they are cleaved. The HinfI site most resistant to cleavage in pBR322 DNA I is unique in that runs of G-C base pairs are immediately adjacent on both sites. Two differently permuted linear (DNA III) species were produced by cleavage with two different restriction endonucleases, PstI and AvaI. Only one of these linear molecules, that produced by PstI, exhibits the same preferential cleavage pattern as DNA I. The second linear species, that arising from AvaI digestion, shows pronounced relative inhibition of cleavage at the HinfI sites nearest the ends of the molecule (100 to 120 base pairs away, respectively). This result suggest that proximity to the termini of a linear DNA molecule might also influence preferential cleavage. The possibility of formation of stem-loop structures does not appear to influence preferential cleavage by HinfI.  相似文献   

20.
We have designed and synthesized a series of novel DNA photocleaving agents which break DNA with high sequence specificity. These compounds contain the non-diffusible photoactive p-nitrobenzoyl group covalently linked via a dimethylene (or tetramethylene) spacer to thiazole analogues of the DNA binding portion of the antibiotic bleomycin A2. By using a variety of 5' or 3' 32P-end labeled restriction fragments from plasmid pBR322 as substrate, we have shown that photoactive bithiazole compounds bind DNA at the consensus sequence 5'-AAAT-3' and induce DNA cleavage 3' of the site. Analysis of cleavage sites on the complementary DNA strand and inhibition of DNA breakage by distamycin A indicates these bithiazole derivatives bind and attack the minor groove of DNA. A photoactive unithiazole compound was less specific inducing DNA breakage at the degenerate site 5'-(A/T)(AA/TT)TPu(A/T)-3'. DNA sequence recognition of these derivatives appears to be determined by the thiazole moiety rather than the p-nitrobenzoyl group: use of a tetramethylene group in place of a dimethylene spacer shifted the position of DNA breakage by one base pair. Moreover, much less specific DNA photocleavage was observed for a compound in which p-nitrobenzoyl was linked to the intercalator acridine via a sequence-neutral hexamethylene spacer. The 5'-AAAT-3' specificity of photoactive bithiazole derivatives contrasts with that of bleomycin A2 which cleaves DNA most frequently at 5'-GPy-3' sequences. These results suggest that the cleavage specificity exhibited by bleomycin is not simply determined by its bithiazole/sulphonium terminus, and the contributions from other features, e.g. its metal-chelating domain, must be considered. The novel thiazole-based DNA cleavage agents described here should prove useful as reagents for probing DNA structure and for elucidating the molecular basis of DNA recognition by bleomycin and other ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号