首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An osmotic remedial allele, gal 7-1, in the galactose pathway of Saccharomyces cerevisiae responds to either penetrating (ethylene glycol and diethylene glycol) or nonpenetrating (KCl, NaCl, and sorbitol) solutes in the growth medium. Extracts from cells grown under restrictive conditions gave no increase in enzyme activity (gal-1-phosphate, uridylyl transferase) when exposed to the penetrating solutes; thus protein synthesis or possibly polymer assembly is proposed as the critical step remedied by the addition of the solutes.  相似文献   

2.
Rhizobium meliloti, like many other bacteria, accumulates high levels of glutamic acid when osmotically stressed. The effect was found to be proportional to the osmolarity of the growth medium. NaCl, KCI, sucrose, and polyethylene glycol elicited this response. The intracellular levels of glutamate and K+ began to increase immediately when cells were shifted to high-osmolarity medium. Antibiotics that inhibit protein synthesis did not affect this increase in glutamate production. Cells growing in conventional media at any stage in the growth cycle could be suspended in medium causing osmotic stress and excess glutamate accumulated. The excess glutamate did not appear to be excreted, and the intracellular level eventually returned to normal when osmotically stressed cells were suspended in low-osmolarity medium. A glt mutant lacking glutamate synthase and auxotrophic for glutamate accumulated excess glutamate in response to osmotic stress. Addition of isoleucine, glutamine, proline, or arginine stimulated glutamate accumulation to wild-type levels when the mutant cells were suspended in minimal medium with NaCl to cause osmotic stress. In both wild-type and mutant cells, inhibitors of transaminase activity, including azaserine and aminooxyacetate, reduced glutamate levels. The results suggest that the excess glutamate made in response to osmotic stress is derived from degradation of amino acids and transamination of 2-ketoglutarate.  相似文献   

3.
TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.  相似文献   

4.
Catalysis of peptide bond formation in the peptidyl transferase center is a major enzymatic activity of the ribosome. Mutations limiting peptidyl transferase activity are mostly lethal. However, cellular processes triggered by peptidyl transferase deficiency in the bacterial cell are largely unknown. Here we report a study of the lethal G2061C mutant of Escherichia coli 23S ribosomal RNA (rRNA). The G2061C mutation completely impaired the puromycin reaction and abolished formation of the active firefly luciferase in an in vitro translation system, while poly(U)- and short synthetic mRNA-directed peptidyl transferase reaction with aminoacylated tRNAs in vitro was seemingly unaffected. Study of the cellular proteome upon expression of the 23S rRNA gene carrying the G2061C mutation compared to cells expressing wild-type 23S rRNA gene revealed substantial differences. Most of the observed effects in the mutant were associated with reduced expression of stress response proteins and particularly proteins associated with the ppGpp-mediated stringent response.  相似文献   

5.
高盐和渗透等非生物胁迫是影响农作物产量和品质的重要因素,非生物胁迫发生时,植物通过体内各类转录因子启动胁迫应答反应,进而降低非生物胁迫对植物的损伤。本研究筛选出植物特异性转录因子ANAC055编码基因的纯合T-DNA插入突变体SALK_152738,测序分析发现T-DNA插在ANAC055基因的3'UTR区域。实时荧光定量PCR结果表明叶中ANAC055基因表达量最高;与野生型相比,突变体叶、茎和花中ANAC055基因表达量分别下降了40%、50%和70%。高盐胁迫后,野生型和突变体叶中ANAC055基因表达量分别比对照上升了320%和55.4%;而渗透胁迫时,该基因叶中的表达量分别比对照下降了47.7%和56.3%;电子表达谱分析发现该基因根中的表达可受高盐和渗透等多种非生物胁迫的诱导表达。高盐和渗透胁迫时野生型和突变体幼根的生长均受到明显抑制,但高盐胁迫对突变体根生长的抑制作用比对野生型根生长的抑制作用更大。上述分析表明拟南芥ANAC055基因可受高盐和渗透等非生物胁迫的诱导表达,并且其在拟南芥幼根的生长发育过程中具有一定的作用,本研究有助于进一步明确其在非生物胁迫过程中的作用。  相似文献   

6.
Summary Pituitary glands from a teleost fish were incubated in the presence of the synthetic hypophysiotropic peptides, thyrotrophin-releasing hormone and somatostatin, in two media of different osmotic pressure.The effects on prolactin and growth hormone cells were detected by electron-microscopic morphometry with the aid of an image analyser. Thyrotrophin-releasing hormone caused changes in prolactin cell ultrastructure consistent with stimulated hormone release and, in the low osmotic pressure medium, appeared to increase synthetic activity. There was no effect on growth hormone cells. After somatostatin treatment, both synthesis and release in prolactin cells appeared to be inhibited, and there was an obvious inhibition of synthesis and release in growth hormone cells. The response of both cell types to somatostatin did not appear to be dependent on the osmotic pressure of the medium.  相似文献   

7.
8.
9.
The glutamine synthetase activity in the wild type and high-light-tolerant mutant of Anacystis exhibited differential response to the increasing light intensity (2–40 W/m2). As evident from the results, the glutamine synthetase (GS) activity in the wild type is more dependent on respiration, whereas the GS enzyme in the mutant cells derived its carbon and energy from photosynthesis. Further, results revealed that the reduced GS activity in the wild-type cells under the high-light stress was accompanied by high aspartate amino transferase (AST/GOT) activity and low alanine amino transferase (ALT/GPT) activity. On the contrary, high GS activity in the mutant cells was accompanied by low AST/GOT enzyme activity and high ALT/GPT activity. It was inferred that mutant and wild-type cells adapt to the high-light stress by different mechanisms.  相似文献   

10.
Two genes, accB and accE, that form part of the same operon, were cloned from Streptomyces coelicolor A3(2). AccB is homologous to the carboxyl transferase domain of several propionyl coezyme A (CoA) carboxylases and acyl-CoA carboxylases (ACCases) of actinomycete origin, while AccE shows no significant homology to any known protein. Expression of accB and accE in Escherichia coli and subsequent in vitro reconstitution of enzyme activity in the presence of the biotinylated protein AccA1 or AccA2 confirmed that AccB was the carboxyl transferase subunit of an ACCase. The additional presence of AccE considerably enhanced the activity of the enzyme complex, suggesting that this small polypeptide is a functional component of the ACCase. The impossibility of obtaining an accB null mutant and the thiostrepton growth dependency of a tipAp accB conditional mutant confirmed that AccB is essential for S. coelicolor viability. Normal growth phenotype in the absence of the inducer was restored in the conditional mutant by the addition of exogenous long-chain fatty acids in the medium, indicating that the inducer-dependent phenotype was specifically related to a conditional block in fatty acid biosynthesis. Thus, AccB, together with AccA2, which is also an essential protein (E. Rodriguez and H. Gramajo, Microbiology 143:3109-3119, 1999), are the most likely components of an ACCase whose main physiological role is the synthesis of malonyl-CoA, the first committed step of fatty acid synthesis. Although normal growth of the conditional mutant was restored by fatty acids, the cultures did not produce actinorhodin or undecylprodigiosin, suggesting a direct participation of this enzyme complex in the supply of malonyl-CoA for the synthesis of these secondary metabolites.  相似文献   

11.
Roles of amyloplasts and water deficit in root tropisms   总被引:3,自引:0,他引:3  
Directed growth of roots in relation to a moisture gradient is called hydrotropism. The no hydrotropic response (nhr1) mutant of Arabidopsis lacks a hydrotropic response, and shows a stronger gravitropic response than that of wild type (wt) in a medium with an osmotic gradient. Local application of abscisic acid (ABA) to seeds or root tips of nhr1 increased root downward growth, indicating the critical role of ABA in tropisms. Wt roots germinated and treated with ABA in this system were strongly gravitropic, even though they had almost no starch amyloplasts in the root-cap columella cells. Hydrotropically stimulated nhr1 roots, with or without ABA, maintained starch in the amyloplasts, as opposed to those of wt. Hence, the near-absence (wt) or abundant presence (nhr1) of starch granules does not influence the extent of downward gravitropism of the roots in an osmotic gradient medium. Starch degradation in the wt might help the root sustain osmotic stress and carry out hydrotropism, instead of reducing gravity responsiveness. nhr1 roots might be hydrotropically inactive because they maintain this starch reserve in the columella cells, sustaining both their turgor and growth, and in effect minimizing the need for hydrotropism and at least partially disabling its mechanism. We conclude that ABA and water stress are critical regulators of root tropic responses.  相似文献   

12.
Hyphal tip-growing organisms often rely upon an internal hydrostatic pressure (turgor) to drive localized expansion of the cell. Regulation of the turgor in response to osmotic shock is mediated primarily by an osmotic MAP kinase cascade which activates osmolyte synthesis and ion uptake to effect turgor recovery. We characterized a Neurospora crassa homolog (PTK2) of ser/thr kinase regulators of ion transport in yeast to determine its role in turgor regulation in a filamentous fungi. The ptk2 mutant is osmosensitive, and has lower turgor poise than wildtype. The cause appears to be lower activity of the plasma membrane H+-ATPase. Its role in osmoadaptation is unrelated to the activity of the osmotic MAP kinase cascade. Instead, it acts in an alternative pathway that, like the osmotic MAP kinase cascade, also involves ion transport mediated osmoadaptation.  相似文献   

13.
The importance of the DNA structure for the expression of the osmotic response (osmotolerance) was investigated in Bacillus subtilis 168. Plasmid pUB110 DNA was used as a reporter of the chromosomal DNA topology, and analyses were performed in chloroquine agarose gels. Plasmidic DNA obtained from cultures in Schaeffer medium (D) taken in those periods in which B. subtilis is able to express osmotolerance (early stationary phase or from germinating spores) or from adapted cultures to hyperosmotic medium (DN) presented a higher level of negative supercoiling than DNA samples from vegetative cultures, normally refractory to induction of osmotolerance. The involvement of the DNA gyrase was investigated through the sensitivity to novobiocin, an antibiotic inhibitor of its activity and the behavior of a gyrB1 mutant strain (RG1). In the wild-type strain, the addition of a sublethal concentration of novobiocin (0.5 μg/ml) to the hyperosmotic medium relaxed DNA and inhibited growth. Moreover, already growing cultures in DN medium and later submitted to the same antibiotic presented a relaxed DNA and stopped growing. The RG1 mutant strain submitted to similar novobiocin treatments displayed normal growth in DN novobiocin medium. These results pointed to the requirement of a highly negative supercoiled DNA structure involving the gyrase activity in osmotic response. Received: 9 May 1997 / Accepted: 18 June 1997  相似文献   

14.
Glycosyltransferases are involved in the biosynthesis of lipid-linked N-glycans. Here, we identify and characterize a mannosyltransferase gene from Arabidopsis thaliana, which is the functional homolog of the ALG3 (Dol-P-Man:Man5GlcNAc2-PP-Dol alpha1,3-mannosyl transferase) gene in yeast. The At ALG3 protein can complement a Deltaalg3 yeast mutant and is localized to the endoplasmic reticulum in yeast and in plants. A homozygous T-DNA insertion mutant, alg3-2, was identified in Arabidopsis with residual levels of wild-type ALG3, derived from incidental splicing of the 11th intron carrying the T-DNAs. N-glycan analysis of alg3-2 and alg3-2 in the complex-glycan-less mutant background, which lacks N-acetylglucosaminyl-transferase I activity, reveals that when ALG3 activity is strongly reduced, almost all N-glycans transferred to proteins are aberrant, indicating that the Arabidopsis oligosaccharide transferase complex is remarkably substrate tolerant. In alg3-2 plants, the aberrant glycans on glycoproteins are recognized by endogenous mannosidase I and N-acetylglucosaminyltransferase I and efficiently processed into complex-type glycans. Although no high-mannose-type glycoproteins are detected in alg3-2 plants, these plants do not show a growth phenotype under normal growth conditions. However, the glycosylation abnormalities result in activation of marker genes diagnostic of the unfolded protein response.  相似文献   

15.
16.
Jasmonic acid (JA) is regarded as an endogenous regulator which plays an important role in regulating plant growth, development and stress response. Using the seedlings of A. thaliana ecotype Col-0 (wild-type, WT), phospholipase Dδ (PLDδ) deficient mutant (pldδ), the G protein α subunit (GPA1) deficient mutant (gpa1-4), 9-Lipoxygenase (9-LOX) deficient mutants (lox1 and lox5) as materials, the effects of JA responding to osmotic stress and the functions of G protein and PLDδ in this response were investigated. The results showed that GPA1 involved in the regulation of JA to PLDδ under osmotic stress. Both GPA1 and PLDδ participated in the regulation of JA on the seed germination and osmotic tolerance. Exogenous MeJA reduced the EL and MDA in WT, but increased the EL and MDA in gpa1-4 and pldδ, indicating that GPA1 and PLDδ were involved in the protection of JA on the membrane. The genes expression levels, and the activities of PLDδ and LOX1 were significantly induced by osmotic stress. The LOX activity and JA content in pldδ seedings were lower obviously than those in WT, but were markedly increased and were higher than WT after applying phosphatidic acid (PA). These results demonstrated that JA responded to osmotic stress by regulating G protein and PLDδ in A. thaliana. PLDδ was located upstream of 9-LOX and involved in the JA biosynthesis.  相似文献   

17.
Zhao Y  Wang T  Zhang W  Li X 《The New phytologist》2011,189(4):1122-1134
? The SOS signaling pathway plays an important role in plant salt tolerance. However, little is known about how the SOS pathway modulates organ development in response to salt stress. Here, the involvement of SOS signaling in NaCl-induced lateral root (LR) development in Arabidopsis was assessed. ? Wild-type and sos3-1 mutant seedlings on iso-osmotic concentrations of NaCl and mannitol were analyzed. The marker lines for auxin accumulation, auxin transport, cell division activity and stem cells were also examined. ? The results showed that ionic effect alleviates the inhibitory effects of osmotic stress on LR development. LR development of the sos3-1 mutant showed increased sensitivity specifically to low salt. Under low-salt conditions, auxin in cotyledons and LR primordia (LRP) of the sos3-1 mutant was markedly reduced. Decreases in auxin polar transport of mutant roots may cause insufficient auxin supply, resulting in defects not only in LR initiation but also in cell division activity in LRP. ? Our data uncover a novel role of the SOS3 gene in modulation of LR developmental plasticity and adaptation in response to low salt stress, and reveal a new mechanism for plants to sense and adapt to small changes of salt.  相似文献   

18.
The homolog of the chromosomally encoded stationary-phase sigma factor RpoS in Borrelia burgdorferi was inactivated using gyrB(r) as a selectable marker. Two-dimensional nonequilibrium pH gradient electrophoresis of stationary-phase cell lysates identified at least 11 differences between the protein profiles of the rpoS mutant and wild-type organisms. Wild-type B. burgdorferi had a growth phase-dependent resistance to 1 N NaCl, similar to the stationary-phase response reported for other bacteria. The B. burgdorferi rpoS mutant strain was less resistant to osmotic stress in stationary phase than the isogenic rpoS wild-type organism. The results indicate that the B. burgdorferi rpoS homolog influences protein composition and participates in stationary-phase-dependent osmotic resistance. This rpoS mutant will be useful for studying regulation of gene expression in response to changing environmental conditions.  相似文献   

19.
Three temperature-sensitive, adenine-requiring mutants of Neurospora crassa were found to be osmotic-remedial when non-penetrating solutes were used to increase the osmolarity of the growth medium. The affected enzyme (adenylosuccinase) from one of the mutants (ad-4, 44206t) was found to have higher levels of activity when the organism was grown at non-permissive temperatures under osmotic-remedial conditions than when it was grown with adenine as a nutritional supplement. The enzyme synthesized at 30 degrees C in the presence of adenine exhibited increased sensitivity to inhibition by high salt concentrations and a lowered stability toward heat denaturation, indicating that the remedial effect may be the result of changes in the physical properties of the enzyme molecule. Temperature shift experiments indicate that the enzyme which is synthesized at permissive temperatures or under osmotic-remedial conditions is also stable in vivo under non-permissive conditions. This suggests that the critical period for temperature sensitivity, and conversely osmotic remediability, may be during protein synthesis or during the conformational folding of the protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号