首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of a new human coronavirus   总被引:29,自引:0,他引:29  
Three human coronaviruses are known to exist: human coronavirus 229E (HCoV-229E), HCoV-OC43 and severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV). Here we report the identification of a fourth human coronavirus, HCoV-NL63, using a new method of virus discovery. The virus was isolated from a 7-month-old child suffering from bronchiolitis and conjunctivitis. The complete genome sequence indicates that this virus is not a recombinant, but rather a new group 1 coronavirus. The in vitro host cell range of HCoV-NL63 is notable because it replicates on tertiary monkey kidney cells and the monkey kidney LLC-MK2 cell line. The viral genome contains distinctive features, including a unique N-terminal fragment within the spike protein. Screening of clinical specimens from individuals suffering from respiratory illness identified seven additional HCoV-NL63-infected individuals, indicating that the virus was widely spread within the human population.  相似文献   

2.
20世纪60年代以前,人们普遍认为只有2种人冠状病毒(HCoV)HCoV-229E和HCoV-OC43感染人类,2002~2003年出现的由SARS-CoV引发的严重急性呼吸综合征(SARS)的流行使人冠状病毒又一次成为研究的焦点,2004年又发现了一种新的人冠状病毒HCoV-NL63。在此,主要就HCoV-NL63,特别是其主要结构蛋白——棘突蛋白的研究进展做一简要综述。  相似文献   

3.
多年来,人们公认的人冠状病毒包括HCoV-229E和HCoV-0C43等2株。但2002-2003年,由一种新型人冠状病毒SARS-CoV所引发的全球范围的严重急性呼吸综合征(SARS)的流行,使多国蒙受巨大损失,由此,冠状病毒又成为研究的焦点。随着分子生物学技术的发展,2004-2005年,又发现了2种新型人冠状病毒HCoV-NL63和HCoV-HKU1。在此,就这2种病毒的发现、流行情况,及其与疾病的相关性做一简要综述。  相似文献   

4.
From the mid-1960s onwards, it was believed that only two human coronavirus species infect humans: HCoV-229E and HCoV-OC43. Then, in 2003, a novel member of the coronavirus family was introduced into the human population: SARS-CoV, causing an aggressive lung disease. Fortunately, this virus was soon expelled from the human population, but it quickly became clear that the human coronavirus group contains more members then previously assumed, with HCoV-NL63 identified in 2004. Despite its recent discovery, ample results from HCoV-NL63 research have been described. We present an overview of the publications on this novel coronavirus.  相似文献   

5.
Viruses require specific cellular receptors to infect their target cells. Angiotensin-converting enzyme 2 (ACE2) is a cellular receptor for two divergent coronaviruses, SARS coronavirus (SARS-CoV) and human coronavirus NL63 (HCoV-NL63). In addition to hostcell receptors, lysosomal cysteine proteases are required for productive infection by some viruses. Here we show that SARS-CoV, but not HCoV-NL63, utilizes the enzymatic activity of the cysteine protease cathepsin L to infect ACE2-expressing cells. Inhibitors of cathepsin L blocked infection by SARS-CoV and by a retrovirus pseudotyped with the SARS-CoV spike (S) protein but not infection by HCoV-NL63 or a retrovirus pseudotyped with the HCoV-NL63 S protein. Expression of exogenous cathepsin L substantially enhanced infection mediated by the SARS-CoV S protein and by filovirus GP proteins but not by the HCoV-NL63 S protein or the vesicular stomatitis virus G protein. Finally, an inhibitor of endosomal acidification had substantially less effect on infection mediated by the HCoV-NL63 S protein than on that mediated by the SARS-CoV S protein. Our data indicate that two coronaviruses that utilize a common receptor nonetheless enter cells through distinct mechanisms.  相似文献   

6.
Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV.  相似文献   

7.
Zheng Q  Deng Y  Liu J  van der Hoek L  Berkhout B  Lu M 《Biochemistry》2006,45(51):15205-15215
Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an alpha-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 degrees C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.  相似文献   

8.
分别设计HCoV-NL63和HCoV-HKU1特异的引物与荧光标记探针,并合成含靶基因的模板RNA,建立常规RT-PCR方法与实时荧光定量RT-PCR方法,对其灵敏性、特异性和可重复性以及用于临床样本的适用性等进行平行比较评价.结果表明:这两种方法皆可对HCoV-NL63或HCoV-HKU1进行特异性诊断,其中荧光定量RT-PCR方法检测灵敏度均可达10拷贝/25μL反应体积,不同批次重复检测结果间的变异系数均小于5%.上述方法应用于158份临床鼻咽拭子标本,其中荧光定量RT-PCR方法检出6份HCoV-NL63阳性标本,5份HCoV-HKU1阳性标本,而常规RT-PCR方法则分别检出HCoV-NL63阳性与HCoV-HKU1阳性各3份.对常规RT-PCR方法获得的阳性样品进行序列分析证实上述方法的可靠性.本实验成功建立了可用于临床标本检测的人冠状病毒HCoV-NL63和HCoV-HKU1常规RT-PCR方法与实时荧光定量RT-PCR检测方法,并初步证实荧光定量RT-PCR检测方法检出率明显高于常规RT-PCR方法,这为开展HCoV-NL63和HCoV-HKU1的流行监测及临床早期诊断提供了有效技术手段.  相似文献   

9.
目的:重组表达人冠状病毒NL63(HCoV-NL63)的核壳蛋白(N蛋白)及棘突蛋白(S蛋白),用于检测血清中的相应抗体。方法:用原核表达系统表达HCoV-NL63的N蛋白,建立检测N抗体的Werstern印迹法;用真核表达系统表达HCoV-NL63的S蛋白,建立检测S抗体的间接免疫荧光(IFA)法。结果:经Werstern印迹检测,重组S蛋白和N蛋白表达正确;初步建立了N蛋白纯化方法。利用建立的检测方法,检测了100份正常成人血清,总阳性率为81%。其中S抗体阳性率为66%,N抗体阳性率为38%,S抗体和N抗体均为阳性的占总数的22%,双抗体均为阴性的占总数的19%;S抗体的检出率明显高于N抗体。结论:重组HCoV-NL63N蛋白及S蛋白表达成功;S抗体和N抗体共同检测可获得较好的检测结果,减少漏检。  相似文献   

10.
为了解北京地区新近发现的新型冠状病毒-人冠状病毒NL63(Human coronavirus NL63,HCoV-NL63)的N和E蛋白编码基因的特征,从经RT-PCR检测阳性的临床标本中扩增得到的HCoV-NL63 N蛋白和E蛋白编码基因序列,分别克隆至pCF-T和pUCm-T载体中并进行测序,同时运用生物信息学的方法,对北京HCoV-NL63阳性标本BJ8081 N和E蛋白编码基因的核苷酸和氨基酸序列与HCoV-NL63原型株及其他几种冠状病毒的N和E蛋白编码基因的核苷酸和氨基酸序列进行比较分析和种系进化分析;用SOPMA方法对BJ8081 N和E蛋白的二级结构进行了预测分析,并对N和E蛋白的其他生物学特性进行了预测分析.经序列比对分析发现,BJ8081 N蛋白氨基酸序列在78~85肽段(FYYLGTGP)内与所比较的其他冠状病毒N蛋白相应位置的氨基酸序列完全相同,提示此区段可能为包括HCoV-NL63在内的所有冠状病毒N蛋白的保守区域.在BJ8081 N蛋白氨基酸序列的100~121肽段可能是和基因组RNA相结合的位置;在BJ8081 E蛋白的15~37位氨基酸可能是E蛋白的跨膜区域.研究对BJ8081 N蛋白和E蛋白的编码基因序列进行了测定和生物信息学分析,为今后对HCoV-NL63的进一步深入研究奠定了基础.  相似文献   

11.
Before the SARS outbreak only two human coronaviruses (HCoV) were known: HCoV-OC43 and HCoV-229E. With the discovery of SARS-CoV in 2003, a third family member was identified. Soon thereafter, we described the fourth human coronavirus (HCoV-NL63), a virus that has spread worldwide and is associated with croup in children. We report here the complete genome sequence of two HCoV-NL63 clinical isolates, designated Amsterdam 57 and Amsterdam 496. The genomes are 27,538 and 27,550 nucleotides long, respectively, and share the same genome organization. We identified two variable regions, one within the 1a and one within the S gene, whereas the 1b and N genes were most conserved. Phylogenetic analysis revealed that HCoV-NL63 genomes have a mosaic structure with multiple recombination sites. Additionally, employing three different algorithms, we assessed the evolutionary rate for the S gene of group Ib coronaviruses to be approximately 3 x 10(-4) substitutions per site per year. Using this evolutionary rate we determined that HCoV-NL63 diverged in the 11th century from its closest relative HCoV-229E.  相似文献   

12.
Human coronavirus NL63 (HCoV-NL63), a common human respiratory pathogen, is associated with both upper and lower respiratory tract disease in children and adults. Currently, no antiviral drugs are available to treat CoV infections; thus, potential drug targets need to be identified and characterized. Here, we identify HCoV-NL63 replicase gene products and characterize two viral papain-like proteases (PLPs), PLP1 and PLP2, which process the viral replicase polyprotein. We generated polyclonal antisera directed against two of the predicted replicase nonstructural proteins (nsp3 and nsp4) and detected replicase proteins from HCoV-NL63-infected LLC-MK2 cells by immunofluorescence, immunoprecipitation, and Western blot assays. We found that HCoV-NL63 replicase products can be detected at 24 h postinfection and that these proteins accumulate in perinuclear sites, consistent with membrane-associated replication complexes. To determine which viral proteases are responsible for processing these products, we generated constructs representing the amino-terminal end of the HCoV-NL63 replicase gene and established protease cis-cleavage assays. We found that PLP1 processes cleavage site 1 to release nsp1, whereas PLP2 is responsible for processing both cleavage sites 2 and 3 to release nsp2 and nsp3. We expressed and purified PLP2 and used a peptide-based assay to identify the cleavage sites recognized by this enzyme. Furthermore, by using K48-linked hexa-ubiquitin substrate and ubiquitin-vinylsulfone inhibitor specific for deubiquitinating enzymes (DUBs), we confirmed that, like severe acute respiratory syndrome (SARS) CoV PLpro, HCoV-NL63 PLP2 has DUB activity. The identification of the replicase products and characterization of HCoV-NL63 PLP DUB activity will facilitate comparative studies of CoV proteases and aid in the development of novel antiviral reagents directed against human pathogens such as HCoV-NL63 and SARS-CoV.  相似文献   

13.
14.
将HCoV-NL63核衣壳蛋白N端(Np1~154aa)、C端(Cp141~306aa)基因片段克隆到原核表达载体pET30a(+)上进行原核表达,制备相应的纯化蛋白Np、Cp蛋白,利用Np、Cp蛋白建立基于Western-Blot条带印迹的HCoV-NL63抗体检测法,并与基于全长N蛋白(Nf)的HCoV-NL63抗体检测法相平行筛查了50份成年体检血清。结果显示:50份成年体检血清中,采用Nf、Np、Cp分别检出25、27、36份HCoV-NL63抗体阳性血清,检出率分别为50%、54%、72%。不同N蛋白与血清反应抗体阳性谱存在差异,其中Np与Nf检出一致率为64%,Cp与Nf检出一致率为54%,而Np与Cp检出一致率为54%。本研究表明人冠状病毒NL63在我国人群中感染常见,N蛋白C端(Cp)检出率比全长N(Nf)及N端(Np)要高,Nf、Np、Cp在抗体检测上存在不一致性。这为HCoV-NL63血清学试剂研发及免疫学研究提供了依据与实验基础。  相似文献   

15.
Infection by human coronaviruses is usually characterized by rampant viral replication and severe immunopathology in host cells. Recently, the coronavirus papain-like proteases (PLPs) have been identified as suppressors of the innate immune response. However, the molecular mechanism of this inhibition remains unclear. Here, we provide evidence that PLP2, a catalytic domain of the nonstructural protein 3 of human coronavirus NL63 (HCoV-NL63), deubiquitinates and stabilizes the cellular oncoprotein MDM2 and induces the proteasomal degradation of p53. Meanwhile, we identify IRF7 (interferon regulatory factor 7) as a bona fide target gene of p53 to mediate the p53-directed production of type I interferon and the innate immune response. By promoting p53 degradation, PLP2 inhibits the p53-mediated antiviral response and apoptosis to ensure viral growth in infected cells. Thus, our study reveals that coronavirus engages PLPs to escape from the innate antiviral response of the host by inhibiting p53-IRF7-IFNβ signaling.  相似文献   

16.
The last two decades of the 21st century have seen emerging zoonotic coronavirus(CoV)diseases,including severe acute respiratory syndrome(SARS)(Holmes 2003),Middle East respiratory syndrome(MERS)(Graham et al.,2013)and coronavirus disease 2019(COVID-19)(Jiang et al.,2020).  相似文献   

17.
The type II transmembrane protease TMPRSS2 activates the spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) on the cell surface following receptor binding during viral entry into cells. In the absence of TMPRSS2, SARS-CoV achieves cell entry via an endosomal pathway in which cathepsin L may play an important role, i.e., the activation of spike protein fusogenicity. This study shows that a commercial serine protease inhibitor (camostat) partially blocked infection by SARS-CoV and human coronavirus NL63 (HCoV-NL63) in HeLa cells expressing the receptor angiotensin-converting enzyme 2 (ACE2) and TMPRSS2. Simultaneous treatment of the cells with camostat and EST [(23,25)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester], a cathepsin inhibitor, efficiently prevented both cell entry and the multistep growth of SARS-CoV in human Calu-3 airway epithelial cells. This efficient inhibition could be attributed to the dual blockade of entry from the cell surface and through the endosomal pathway. These observations suggest camostat as a candidate antiviral drug to prevent or depress TMPRSS2-dependent infection by SARS-CoV.  相似文献   

18.
Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS). STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKε, leading to IRF-3 activation and subsequent induction of interferon (IFN). We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM) or SARS-CoV (PLpro-TM) inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKε complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction.  相似文献   

19.
HCoV-NL63是新近发现的人冠状病毒,对其外膜糖蛋白-棘突蛋白的表达及功能的研究仍有待深入。本研究利用天坛株痘苗病毒载体,克隆构建可表达HCoV-NL63棘突蛋白四个片段(N端棘突蛋白:S1;C端棘突蛋白:S2;受体结合区大片段:RL;受体结合区小片段:RS)的重组痘苗病毒(vJSC1175-S1;vJSC1175-S2;vJSC1175-RL;vJSC1175-RS),酶切测序证实表达载体构建正确,免疫荧光分析(IFA)各重组痘苗病毒中棘突蛋白不同片段的表达与定位,Western-Blot分析表明各种重组蛋白表达正确。分析结果显示:4种重组蛋白均能有效表达,S1、RL及RS蛋白的荧光主要分布在细胞膜上,而S2蛋白的荧光则主要分布于细胞浆,各个片段的分子量大小与文献报道相同,并可进行正确的翻译修饰(糖基化)。本研究首次采用痘苗病毒天坛株载体构建制备了表达HCoV-NL63棘突蛋白不同片段的重组痘苗病毒,为进一步分析人冠状病毒HCoV-NL63棘突蛋白的结构功能及探索其抗原性和免疫原性奠定了基础。  相似文献   

20.
BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus that first occurred in Wuhan in December 2019. The spike glycoproteins and nucleocapsid proteins are the most common targets for the development of vaccines and antiviral drugs.ObjectiveWe herein analyze the rate of evolution along with the sequences of spike and nucleocapsid proteins in relation to the spatial locations of their epitopes, previously suggested to contribute to the immune response caused by SARS-CoV-2 infections.MethodsWe compare homologous proteins of seven human coronaviruses: HCoV-229E, HCoV-OC43, SARS-CoV, HCoV-NL63, HCoV-HKU1, MERS-CoV, and SARS-CoV-2. We then focus on the local, structural order-disorder propensity of the protein regions where the SARS-CoV-2 epitopes are located. ResultsWe show that most of nucleocapsid protein epitopes overlap the RNA-binding and dimerization domains, and some of them are characterized by a low rate of evolutions. Similarly, spike protein epitopes are preferentially located in regions that are predicted to be ordered and well- conserved, in correspondence of the heptad repeats 1 and 2. Interestingly, both the receptor-binding motif to ACE2 and the fusion peptide of spike protein are characterized by a high rate of evolution.ConclusionOur results provide evidence for conserved epitopes that might help develop broad-spectrum SARS-CoV-2 vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号