首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: Linkage analysis is a useful tool for detecting genetic variants that regulate a trait of interest, especially genes associated with a given disease. Although penetrance parameters play an important role in determining gene location, they are assigned arbitrary values according to the researcher's intuition or as estimated by the maximum likelihood principle. Several methods exist by which to evaluate the maximum likelihood estimates of penetrance, although not all of these are supported by software packages and some are biased by marker genotype information, even when disease development is due solely to the genotype of a single allele. FINDINGS: Programs for exploring the maximum likelihood estimates of penetrance parameters were developed using the R statistical programming language supplemented by external C functions. The software returns a vector of polynomial coefficients of penetrance parameters, representing the likelihood of pedigree data. From the likelihood polynomial supplied by the proposed method, the likelihood value and its gradient can be precisely computed. To reduce the effect of the supplied dataset on the likelihood function, feasible parameter constraints can be introduced into maximum likelihood estimates, thus enabling flexible exploration of the penetrance estimates. An auxiliary program generates a perspective plot allowing visual validation of the model's convergence. The functions are collectively available as the MLEP R package. CONCLUSIONS: Linkage analysis using penetrance parameters estimated by the MLEP package enables feasible localization of a disease locus. This is shown through a simulation study and by demonstrating how the package is used to explore maximum likelihood estimates. Although the input dataset tends to bias the likelihood estimates, the method yields accurate results superior to the analysis using intuitive penetrance values for disease with low allele frequencies. MLEP is part of the Comprehensive R Archive Network and is freely available at http://cran.r-project.org/web/packages/MLEP/index.html.  相似文献   

2.
What does the posterior probability of a phylogenetic tree mean?This simulation study shows that Bayesian posterior probabilities have the meaning that is typically ascribed to them; the posterior probability of a tree is the probability that the tree is correct, assuming that the model is correct. At the same time, the Bayesian method can be sensitive to model misspecification, and the sensitivity of the Bayesian method appears to be greater than the sensitivity of the nonparametric bootstrap method (using maximum likelihood to estimate trees). Although the estimates of phylogeny obtained by use of the method of maximum likelihood or the Bayesian method are likely to be similar, the assessment of the uncertainty of inferred trees via either bootstrapping (for maximum likelihood estimates) or posterior probabilities (for Bayesian estimates) is not likely to be the same. We suggest that the Bayesian method be implemented with the most complex models of those currently available, as this should reduce the chance that the method will concentrate too much probability on too few trees.  相似文献   

3.
最近,人们突变积累实验(MA)中测定有害基因突变(DGM)的兴趣大增。在MA实验中有两种常见的DGM估计方法(极大似然法ML和距法MM),依靠计算机模拟和处理真实数据的应用软件来比较这两种方法。结论是:ML法难于得到最大似然估计(MLEs),所以ML法不如MM法估计有效;即使MLEs可得,也因其具严重的微样误差(据偏差和抽样差异)而产生估计偏差;似然函数曲线较平坦而难于区分高峰态和低峰态的分布。  相似文献   

4.
We consider two methods of estimating phenotype probabilities for a number of standard genetic markers like the ABO, MNSs, and PGM markers. The first method is based on the maximum likelihood estimates of the allele probabilities, and the second (multinomial) method uses the phenotype proportions in the sample. The latter is easy to use, the estimates are always unbiased, and simple formulae for variances are available. The former method, although giving more efficient estimates, requires the assumption of panmixia so that the Hardy-Weinberg law can be used. The two methods are compared theoretically, where possible, or by simulation. Under panmixia, the maximum likelihood estimates can be substantially more efficient than the multinomial estimates. The estimates are also compared in the codominant allele case for nonpanmictic populations. The question of efficiency is of importance when estimating the probability of obtaining a given set of phenotypes, i.e., the product of individual phenotype estimators. This problem is discussed briefly.  相似文献   

5.
S Eguchi  M Matsuura 《Biometrics》1990,46(2):415-426
A new method of testing the Hardy-Weinberg equilibrium in the human leukocyte antigen (HLA) system is proposed and applied to real data. The derivation is based on the maximum likelihood method and closely related to standard regression theory. The test statistic has a closed representation of residual sum of squares by a projection mapping of data onto the estimated regression plane. Under the Hardy-Weinberg law the noniterative estimates for the gene frequencies are suggested by the use of the projection mapping. The test statistic and gene frequency estimates are shown to be asymptotically equivalent to the maximum likelihood method and to be more efficient than the other suggested test statistic when there are more than two identified alleles.  相似文献   

6.
This paper describes mathematical and computational methodology for estimating the parameters of the Burr Type XII distribution by the method of maximum likelihood. Expressions for the asymptotic variances and covariances of the parameter estimates are given, and the modality of the log-likelihood and conditional log-likelihood functions is analyzed. As a result of this analysis for various a priori known and unknown parameter combinations, conditions are given which guarantee that the parameter estimates obtained will, indeed, be maximum likelihood estimates. An efficient numerical method for maximizing the conditional log-likelihood function is described, and mathematical expressions are given for the various numerical approximations needed to evaluate the expressions given for the asymptotic variances and covariances of the parameter estimates. The methodology discussed is applied in a numerical example to life test data arising in a clinical setting.  相似文献   

7.
A statistical method (based on the maximum likelihood principle) for estimating mortalities of skeletal populations is presented. The method can be applied both when osteological age groups are not overlapping as well as when they are. The results are presented as point estimates and as confidence intervals around these. The method is applied to two series from the Middle Ages: Westerhus and Helgeandsholmen.  相似文献   

8.
Summary Logistic regression is an important statistical procedure used in many disciplines. The standard software packages for data analysis are generally equipped with this procedure where the maximum likelihood estimates of the regression coefficients are obtained iteratively. It is well known that the estimates from the analyses of small‐ or medium‐sized samples are biased. Also, in finding such estimates, often a separation is encountered in which the likelihood converges but at least one of the parameter estimates diverges to infinity. Standard approaches of finding such estimates do not take care of these problems. Moreover, the missingness in the covariates adds an extra layer of complexity to the whole process. In this article, we address these three practical issues—bias, separation, and missing covariates by means of simple adjustments. We have applied the proposed technique using real and simulated data. The proposed method always finds a solution and the estimates are less biased. A SAS macro that implements the proposed method can be obtained from the authors.  相似文献   

9.
Proportional hazards model with covariates subject to measurement error.   总被引:1,自引:0,他引:1  
T Nakamura 《Biometrics》1992,48(3):829-838
When covariates of a proportional hazards model are subject to measurement error, the maximum likelihood estimates of regression coefficients based on the partial likelihood are asymptotically biased. Prentice (1982, Biometrika 69, 331-342) presents an example of such bias and suggests a modified partial likelihood. This paper applies the corrected score function method (Nakamura, 1990, Biometrika 77, 127-137) to the proportional hazards model when measurement errors are additive and normally distributed. The result allows a simple correction to the ordinary partial likelihood that yields asymptotically unbiased estimates; the validity of the correction is confirmed via a limited simulation study.  相似文献   

10.
The stability variance is an important estimator of phenotypic stability of genotypes. It may be estimated by method of moments and by maximum likelihood. We demonstrate by Monte Carlo simulation that, given a sufficient number of environments, maximum likelihood estimates (MLE's) are slightly better if ranking of genotypes is the experimenter's major aim. A likelihood ratio test is available for different hypotheses.  相似文献   

11.
Pan W 《Biometrics》2000,56(1):199-203
We propose a general semiparametric method based on multiple imputation for Cox regression with interval-censored data. The method consists of iterating the following two steps. First, from finite-interval-censored (but not right-censored) data, exact failure times are imputed using Tanner and Wei's poor man's or asymptotic normal data augmentation scheme based on the current estimates of the regression coefficient and the baseline survival curve. Second, a standard statistical procedure for right-censored data, such as the Cox partial likelihood method, is applied to imputed data to update the estimates. Through simulation, we demonstrate that the resulting estimate of the regression coefficient and its associated standard error provide a promising alternative to the nonparametric maximum likelihood estimate. Our proposal is easily implemented by taking advantage of existing computer programs for right-censored data.  相似文献   

12.
In quantitative biology, observed data are fitted to a model that captures the essence of the system under investigation in order to obtain estimates of the parameters of the model, as well as their standard errors and interactions. The fitting is best done by the method of maximum likelihood, though least-squares fits are often used as an approximation because the calculations are perceived to be simpler. Here Brian Williams and Chris Dye argue that the method of maximum likelihood is generally preferable to least squares giving the best estimates of the parameters for data with any given error distribution, and the calculations are no more difficult than for least-squares fitting. They offer a relatively simple explanation of the methods and describe its implementation using examples from leishmaniasis epidemiology.  相似文献   

13.
We introduce a new statistical computing method, called data cloning, to calculate maximum likelihood estimates and their standard errors for complex ecological models. Although the method uses the Bayesian framework and exploits the computational simplicity of the Markov chain Monte Carlo (MCMC) algorithms, it provides valid frequentist inferences such as the maximum likelihood estimates and their standard errors. The inferences are completely invariant to the choice of the prior distributions and therefore avoid the inherent subjectivity of the Bayesian approach. The data cloning method is easily implemented using standard MCMC software. Data cloning is particularly useful for analysing ecological situations in which hierarchical statistical models, such as state-space models and mixed effects models, are appropriate. We illustrate the method by fitting two nonlinear population dynamics models to data in the presence of process and observation noise.  相似文献   

14.
Estimates of quantitative trait loci (QTL) effects derived from complete genome scans are biased, if no assumptions are made about the distribution of QTL effects. Bias should be reduced if estimates are derived by maximum likelihood, with the QTL effects sampled from a known distribution. The parameters of the distributions of QTL effects for nine economic traits in dairy cattle were estimated from a daughter design analysis of the Israeli Holstein population including 490 marker-by-sire contrasts. A separate gamma distribution was derived for each trait. Estimates for both the α and β parameters and their SE decreased as a function of heritability. The maximum likelihood estimates derived for the individual QTL effects using the gamma distributions for each trait were regressed relative to the least squares estimates, but the regression factor decreased as a function of the least squares estimate. On simulated data, the mean of least squares estimates for effects with nominal 1% significance was more than twice the simulated values, while the mean of the maximum likelihood estimates was slightly lower than the mean of the simulated values. The coefficient of determination for the maximum likelihood estimates was five-fold the corresponding value for the least squares estimates.  相似文献   

15.
A commonly used tool in disease association studies is the search for discrepancies between the haplotype distribution in the case and control populations. In order to find this discrepancy, the haplotypes frequency in each of the populations is estimated from the genotypes. We present a new method HAPLOFREQ to estimate haplotype frequencies over a short genomic region given the genotypes or haplotypes with missing data or sequencing errors. Our approach incorporates a maximum likelihood model based on a simple random generative model which assumes that the genotypes are independently sampled from the population. We first show that if the phased haplotypes are given, possibly with missing data, we can estimate the frequency of the haplotypes in the population by finding the global optimum of the likelihood function in polynomial time. If the haplotypes are not phased, finding the maximum value of the likelihood function is NP-hard. In this case, we define an alternative likelihood function which can be thought of as a relaxed likelihood function. We show that the maximum relaxed likelihood can be found in polynomial time and that the optimal solution of the relaxed likelihood approaches asymptotically to the haplotype frequencies in the population. In contrast to previous approaches, our algorithms are guaranteed to converge in polynomial time to a global maximum of the different likelihood functions. We compared the performance of our algorithm to the widely used program PHASE, and we found that our estimates are at least 10% more accurate than PHASE and about ten times faster than PHASE. Our techniques involve new algorithms in convex optimization. These algorithms may be of independent interest. Particularly, they may be helpful in other maximum likelihood problems arising from survey sampling.  相似文献   

16.
M Hühn 《Génome》2000,43(5):853-856
Some relationships between the estimates of recombination fraction in two-point linkage analysis obtained by maximum likelihood, minimum chi-square, and general least squares are derived. These theoretical results are based on an approximation for the multinomial distribution. Applications (theoretical and experimental) with RFLP (restriction fragment length polymorphism) markers for a segregating F2 population are given. The minimum chi-square estimate is slightly larger than the maximum likelihood estimate. For applications, however, both estimates must be considered to be approximately equal. The least squares estimates are slightly different (larger or smaller) from these estimates.  相似文献   

17.
For pedigree data, the maximum likelihood estimates of the parameters in polygenic and mixed models are derived analytically although not in closed form but in terms of "counting equations" allowing an iterative solution. Likelihood computations, tests of significance, and tests of goodness of fit are presented. Accelerating the (linear) rate of convergence by a very simple method is demonstrated.  相似文献   

18.
Generalized linear models are a widely used method to obtain parametric estimates for the mean function. They have been further extended to allow the relationship between the mean function and the covariates to be more flexible via generalized additive models. However, the fixed variance structure can in many cases be too restrictive. The extended quasilikelihood (EQL) framework allows for estimation of both the mean and the dispersion/variance as functions of covariates. As for other maximum likelihood methods though, EQL estimates are not resistant to outliers: we need methods to obtain robust estimates for both the mean and the dispersion function. In this article, we obtain functional estimates for the mean and the dispersion that are both robust and smooth. The performance of the proposed method is illustrated via a simulation study and some real data examples.  相似文献   

19.
Maximum likelihood statistics were applied to the analysis of serological data to confirm the originally proposed genetic models of the chimpanzee R-C-E-F and V-A-B-D systems. Five hundred ninety-nine chimpanzees, including 81 parents of 114 offspring, were tested for R-C-E-F, and 60 parents of 80 offspring were tested for V-A-B-D blood groups. An estimation-maximization procedure was used to obtain maximum likelihood estimates and support intervals of the haplotype frequencies. For each haplotype, the null hypothesis of nonexistence was evaluated. The frequencies obtained by this method do not differ significantly from those calculated by the square root formula, but put these estimates on a statistically more rigorous footing.  相似文献   

20.
Phylogenetic comparative methods (PCMs) have been used to test evolutionary hypotheses at phenotypic levels. The evolutionary modes commonly included in PCMs are Brownian motion (genetic drift) and the Ornstein–Uhlenbeck process (stabilizing selection), whose likelihood functions are mathematically tractable. More complicated models of evolutionary modes, such as branch‐specific directional selection, have not been used because calculations of likelihood and parameter estimates in the maximum‐likelihood framework are not straightforward. To solve this problem, we introduced a population genetics framework into a PCM, and here, we present a flexible and comprehensive framework for estimating evolutionary parameters through simulation‐based likelihood computations. The method does not require analytic likelihood computations, and evolutionary models can be used as long as simulation is possible. Our approach has many advantages: it incorporates different evolutionary modes for phenotypes into phylogeny, it takes intraspecific variation into account, it evaluates full likelihood instead of using summary statistics, and it can be used to estimate ancestral traits. We present a successful application of the method to the evolution of brain size in primates. Our method can be easily implemented in more computationally effective frameworks such as approximate Bayesian computation (ABC), which will enhance the use of computationally intensive methods in the study of phenotypic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号