首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elongation of plant stem is governed by two simultaneous processes:irreversible yielding of the cell wall and uptake of water.Among many candidates for the parameters that regulate and/or restrict growth, we focused on the mechanical propertiesof the cell wall and determined those parameters that governthe process of IAA-induced growth by means of the pressure-jumpmethod combined with the pressure-probe technique. The elongation growth of segments excised from the elongationzone of Vigna hypocotyls was accelerated by xylem perfusionwith 10–4 M IAA. During the promotion of growth, boththe extensibility () of the cell wall and the effective turgor(Pi–Y) increased while only a little or no change in theintracellular pressure (Pi) occurred. These results indicate that IAA increases not only the extensibilityof the cell wall but also the effective turgor, i.e., the drivingforce for yielding of the cell wall. However, the driving forceis not increased by the increase in Pi but by the decrease inthe yield threshold (Y). These results suggest that Y is adjustableduring the regulation of growth. 1Present address: Department of Biology, Faculty of Science,Okayama University, Okayama, 700 Japan (Received September 20, 1990; Accepted November 27, 1990)  相似文献   

2.
The electrical membrane resistance rho(0) of the marine alga Valonia utricularis shows a marked maximum in dependence on the turgor pressure. The critical pressure, P(c), at which the maximum occurs, as well as its absolute value, rho(0) (max), are strongly volume-dependent. Both P(c) and rho(0) (max), increase with decreasing cell volume. It seems likely, that these relationships reflect the elastic properties of the cell wall, because the volumetric elastic modulus, epsilon, is also volume-dependent, increasing hyperbolically with cell volume. Both P(c) and rho(0) (max) can be affected by external application of indole-3-acetic acid at concentrations of 2.10(-7)m to 2 .10(-5)m. The critical pressure is shifted by 1.2 to 6 bars toward higher pressures and the maximum membrane resistance increased up to 5.6-fold. During the course of the experiments (up to 4 hours), however, IAA had no effect on the volumetric elastic modulus, epsilon.The maximum in membrane resistance is discussed in terms of a pressure-dependent change of potassium fluxes. The volume dependence of P(c) and rho(0) (max) suggests that not only turgor pressure but also epsilon must be considered as a regulating parameter during turgor pressure regulation. On this basis a hypothesis is presented for the transformation of both, a pressure signal and of changes in the elastic properties of the cell wall into alterations of ion fluxes. It is assumed that the combined effects of tension and compression of the membranes as well as the interaction between membrane and cell wall opposingly change the number of transport sites for K(+) providing a turgor-sensing mechanism that regulates ion fluxes. The IAA effects demonstrated are consistent with this view, suggesting that the basic mechanisms for turgor pressure regulation and growth regulation are similar.Any relation connecting growth rate with turgor pressure should be governed by two parameters, i.e. by a yielding pressure, at which cell growth starts, and by the critical pressure, at which it ceases again.  相似文献   

3.
4.
The non-permeant protein inhibitor 5,5'-dithiobis-2-nitrobenzoicacid (DTNB) was tested for its effects on auxin induced ethyleneproduction. There was a stimulation in the rate of auxin inducedethylene production at all concentrations of DTNB tested (1,2, 5, and 10 mM). The 5 mM DTNB treatment promoted the maximumstimulation of ethylene production with no further enhancementat the 10 mM concentration. After 12 hr ethylene productionplateaued with 0.1 mM indoleacetic acid (IAA) alone and in combinationwith 1 and 2 mM DTNB. Although the DTNB treatments plateauedit was at a higher level than IAA alone. Both the 5 and 10 mMtreatments of DTNB plus IAA did not show this leveling responseeven after 22 hr at which time these treatments were between90 and 100% higher than the control. There was no stimulationof ethylene production by DTNB in the absence of IAA. Segmentstreated with 10–4 M rß-naphthaleneacetic acid(NAA) produced significantly higher levels of ethylene thanIAA at the same concentration. Stimulation of ethylene productionby DTNB was greatest at lower concentrations of IAA and NAA.The uptake of 14C-NAA by mung bean segments was 6-fold greaterin the presence of DTNB than in its absence. CaSS was requiredin the incubating media for DTNB to be effective. In the presenceof CaSS there was a highly significant increase in ethyleneproduction while in its absence there was no significant effect.The stimulation of IAA induced ethylene production appearedto have a pH optima of 4.6, at higher pH values this responsewas not shown. 1 Approved for publication May 28, 1981 as paper number 6243in the journal series of the Pennyslvania Agricultural ExperimentStation. (Received June 10, 1981; Accepted January 5, 1982)  相似文献   

5.
Al inhibits root elongation at micromolar concentrations, butthe mechanisms leading to this process are unknown. In thesestudies, Al-induced inhibition of cell elongation was examinedusing hypocotyl of okra (Abelmoschus esculentus Moench cv. ClemsonSpineless) as an experimental model. One-h exposure to Al (0.5mM A1Cl3) in the presence of 10 µM auxin in 0.5 mM CaCl2,pH 4.0 significantly inhibited auxin-induced cell elongationof okra hypocotyl segments. Elongation was further suppressedwith increasing Al concentrations up to 1 mM. Treatment of thehypocotyl with 1 mM citrate for 10 minutes after 2-h exposureto Al resulted in significant recovery of elongation. The amountof Al in the cell wall relative to the total in the tissue was96.0, 96.2, and 85.4%, respectively, following 1-, 2-, and 3-hexposure to the Al solution. The total and cell wall Al contentwas decreased by half after the citrate desorption treatment.Further-more, 95% of Al was found in the epidermis, and 95%of the Al in the epidermis was associated with the cell wall.Experiments using split hypocotyl segments showed that Al exposureincreased the outward bending of hypocotyl segments, suggestingthat the epidermis elongation was specifically inhibited byAl. Al inhibited the autolysis of epidermis by about 20%, buthad little effect on the autolysis of core tissue. Taken together,these results suggest that Al binding in the epidermal cellwall inhibits critical components in cell wall loosening mechanism,resulting in inhibition of cell elongation.  相似文献   

6.
In order to study the IAA-induced modifications of the cellwall of azuki bean (Vigna angularis Ohwi et Ohashi cv. Takara)epicotyl segments, the xyloglucans were subfractionated intotwo components, i.e., 4K-U and 24K xyloglucans, which were obtainedby extraction with 4% KOH solution containing 8 M urea and 24%KOH solution, respectively. The weight-average molecular weightsof 4K-U and 24K xyloglucans were estimated to be 40 x 104 and106 x 104, respectively. Complete acid hydrolysis of 4K-U and24K xyloglucans gave glucose, xylose, galactose and fucose inmole % 48.3 : 33.5 : 13.8 : 4.4 and 45.3 : 30.9 : 19.6 : 4.3,respectively. Treatment of epicotyl segments with IAA (0.1 mM) caused a decreasein the amount of 24K xyloglucans and an increase in 4K-U xyloglucans,whereas the total amount of the two xyloglucans remained constant.Furthermore, IAA treatment caused a decrease in the molecularweight of 24K xyloglucans from 106 x 104 to 78 x 104 withoutcausing changes in their sugar compositions. With 4K-U xyloglucans,IAA caused an increase in the mole % of xylose and a decreasein the mole % of galactose and fucose. 1 This paper is dedicated to the late Professor Joji Ashida. (Received November 26, 1982; Accepted February 7, 1983)  相似文献   

7.
During elongation of the Arabidopsis hypocotyl, each cell reacts to light and hormones in a time- and position-dependent manner. Growth in darkness results in the maximal length a wild-type cell can reach. Elongation starts at the base and proceeds in the acropetal direction. Cells in the upper half of the hypocotyl can become the longest of the whole organ. Light strongly inhibits cell elongation all along the hypocotyl, but proportionally more in the upper half. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is known to stimulate hypocotyl elongation in the light. Here we show that this stimulation only occurs in cells of the apical half of the hypocotyl. Moreover, ACC application can partially overcome light inhibition, whereas indole-3-acetic acid (IAA) cannot. On low-nutrient medium (LNM) in the light, elongation is severely reduced as compared to growth on rich medium, and both ACC and IAA can stimulate elongation to the levels reached on a nutrient-rich medium. Furthermore, microtubule orientation was studied in vivo. During elongation in darkness, transverse and longitudinal patterns are clearly related with rates of elongation. In other conditions, except for the association of longitudinally orientated microtubules with growth arrest, microtubule orientation is merely an indicator of developmental age, not of elongation activity. A hypothesis on the relation between microtubules and elongation rate is discussed.  相似文献   

8.
The excised, hooked bean hypocotyl was the system used to determine wheiher the ‘auxin- and gibberellin like’ effect of the lipoidal pollen extract, Brass in-complex (Br), were mediated through, or independent of, auxin and gibberellin. The morphogenetic events of hook opening and hypocotyl elongation in this system are regulated by auxin and gibberellin, respectively. Brassin complex, like IAA, elicited a book closure in (he dark and retarded its opening in red light. This effect was synergized by T1BA, IAA and the presence of the auxin-producing organs, the epicotyl and cotyledons. Br-elicited hook closure was inhibited by the antiauxin. PCIB. Both GA3 and Br totally reversed the light inhibition of hypocotyl elongation. The GA3-effect, but nol the Br elicited elongation, was overcome by Ancymidol. Hypocotyl elongation was partially inhibited by TIBA and PCIB. suggesting a possible auxin involvement also in this effect of Br. Br may elicit its growth responses through an effect on endogenous auxin levels, In this way it is different from other lipoidat growth regulators, such as the oleanimins which require the presence of exogenous growth regulators for activity.  相似文献   

9.
Prat R 《Plant physiology》1978,62(1):75-79
Spontaneous growth was studied in excised mung bean (Phaseolus aureus Roxb.) hypocotyl segments. Measurements were made with a growth-recording apparatus using displacement transducers on single 5- to 6-millimeter samples excised from the growth zone immediately below the hook.  相似文献   

10.
Goldberg, R., Liberman, M., Mathieu, C, Pierron, M. and Catesson,A. M. 1987. Development of epidermal cell wall peroxidases alongthe mung bean hypocotyl: possible involvement in the cell wallstiffening process.—J. exp. Bot. 38: 1378–1390. Ultrastructural investigation showed that in the epidermis ofmung bean hypocotyls, cell wall peroxidatic activities couldbe detected mainly below the maximal elongation zone. In theepidermis the peroxidatic activities were preferentially locatedin the radial cell walls. Cell wall peroxidases were then isolatedfrom epidermal strips and further characterized. The possiblepresence of a H2O2-generating system in the epidermis of mungbean hypocotyls was also investigated. When whole segments wereprocessed for electron microscopy, H2O2 could be detected cytochemicallyin the cell walls with the CeCl3 technique. A positive reactionwas obtained in the same location when specimens were incubatedin a 3-3'-diaminobenzidine medium for peroxidases in which H2O2was replaced by its possible precursors (NADH or NAD + malate).However, isolated epidermal cell walls could not generate H2O2at the expense of NADH although they were able to oxidize thereduced nicotinamide-adenine-dinucleotide. The possible relationshipsbetween peroxidase activities, H2O2, and Ca2+ ions are discussedwith respect to their involvement in the cell wall stiffeningprocess. Key words: Epidermis, cell wall, elongation, peroxidases  相似文献   

11.
12.
The inhibitory protein of ethylene synthesis purified from mungbean seeds reduced ATP levels in mung bean hypocotyl segments.When the segments were incubated with 0.5mM IAA for 6 hr toinduce ethylene-producing activity, the presence of the inhibitoryprotein suppressed the ethylene production and ATP content inthe tissue about 82 and 60%, respectively. Similar suppressiveeffects were also observed for endogenous ethylene productionand ATP contents in tissue not treated with IAA. (Received June 20, 1981; Accepted October 24, 1981)  相似文献   

13.
Hoson T  Nevins DJ 《Plant physiology》1989,90(4):1353-1358
Antiserum was raised against the Avena sativa L. caryopsis β-d-glucan fraction with an average molecular weight of 1.5 × 104. Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1→3), (1→4)-β-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ β-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis β-d-glucans. These results support the idea that the degradation of (1→3), (1→4)-β-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation.  相似文献   

14.
Removal of the endosperm from 84-h-old etiolated oat seedlingsstrongly retarded the subsequent growth of coleoptiles. Thecontribution of the endosperm to coleoptile growth was studied.Endosperm removal was found to: (1) decrease the endogenouslevel of indole-3-acetic acid (IAA) in the coleoptile tip. IAAapplied to the coleoptile tip stimulated coleoptile growth inseedlings with and without the endosperm. The sensitivity ofthe coleoptile to a suboptimal concentration of IAA was higherin seedlings without the endosperm than in intact ones. At theoptimal concentration of IAA, however, the final length of thecoleoptile was larger in intact seedlings than in those withoutthe endosperm. (2) decrease the concentration of the solublesugars and amino acids in the cell sap. (3) retard the increasein the amount of polysaccharides in the cell wall of the coleoptile,particularly noncellulosic ones. (4) make the cell wall mechanicallyrigid according to stress-relaxation analysis of the cell wall.(5) induce an increase in the osmotic potential of the coleoptilecell sap. From these results, it was concluded that the endosperm suppliesthe coleoptile with IAA, sugars and amino acids, thus promotingcoleoptile growth. (Received September 24, 1987; Accepted February 3, 1988)  相似文献   

15.
Auxin-induced elongation and cell wall polysaccharide metabolism were studied in excised hypocotyl sections of ponderosa pine (Pinus ponderosa) seedlings. Sections excised from hypocotyls of ponderosa pine elongate in response to the addition of auxin. The neutral sugar composition of the extracellular solution removed from hypocotyl sections by centrifugation was examined. In cell wall solution from freshly excised sections, glucose, galactose, xylose, and arabinose make up more than 90% of the neutral sugars, while rhamnose, fucose, and mannose are relatively minor components. The neutral sugar composition of the polysaccharides of the pine cell wall solution is both qualitatively and quantitatively similar to that of pea. Following auxin treatment of pine hypocotyls, the neutral sugar composition of the cell wall changes; glucose, xylose, rhamnose, and fucose increase by nearly 2-fold relative to controls in buffer without auxin. These changes in neutral sugars in response to auxin treatment are similar to those found in pea, with the exception that in pea, rhamnose levels decline in response to auxin treatment.  相似文献   

16.
Soybean seedlings treated with ethylene exhibited small increases in ribonucleic acid content in the elongating section of the hypocotyl. Chromatin isolated from the elongating section of ethylene-treated seedlings showed a 35 to 60% increase in the capacity for RNA synthesis. The ethylene-induced response was saturated at 1 microliter/liter of ethylene and was fully expressed after 3 hours. Auxin caused marked accumulation of RNA and DNA in the elongating and basal tissue of the hypocotyl. Chromatin isolated from these auxin-treated tissues showed an 8- to 10- fold increase in RNA synthetic capacity as measured in vitro. Ethylene added with auxin reduced the auxin enhancement of nucleic acid synthesis in the elongating and basal tissues. Both ethylene and auxin treatment of the seedlings inhibited nucleic acid accumulation and chromatin activity in the apical tissue. Ethylene did not appear to mediate the auxin effects on nucleic acid synthesis in soybean hypocotyl with the possible exception of inhibition in the apical tissue.  相似文献   

17.
The basal segment from hypocotyl of Linum usitatissimum L. seedling readily regenerates, to produce a large number of shoots, in a short period of 5 [ndash ] 7 d. This response was stimulated by a low concentration (0.1 [micro ]M) of thidiazuron (TDZ). TDZ was also effective in inducing regeneration in dark. A drastic reduction in regeneration response on hormone-free as well as TDZ-supplemented medium was found after inclusion of an inhibitor of calcium-uptake, lanthanum (La3+). An essentiality of calcium in the regeneration was also evidenced by an increased response with increasing concentration of calcium. At Ca2+ concentration insufficient for regeneration, inclusion of TDZ resulted in shoot formation.  相似文献   

18.
Freeze-etching of Lactobacillus fermenti F-4 (NCTC 7230) revealed that the outer layer of the cell wall was composed of a regular array in which parallel lines ran obliquely to the longitudinal axis of the cell with an average distance between the centers of about 9.6 nm and were intersected by thinner lines with an average periodicity of approximately 6.2 nm at an angle of about 75°. Occasionally the direction of the striation was discontinuously shifted near one end of the cell. Beneath the regular array the middle cell wall layer packed with granules and the smooth inner cell wall layer were discernible and the mesosomes were also visible in the cytoplasm. When the ultrastructure of isolated outer cell wall fragments was examined by negative staining, the regular array appeared to be composed of subunits, about 3.6 nm in diameter, which were arranged in a tetragonal pattern. The tetragonal array consisted of the subunits in rows in two directions at an angle of about 75° to each other. The average spacing between the rows was about 9.3 nm in one direction and 5.5 nm in the other direction.  相似文献   

19.
Elongation of coleoptile segments, having or not having a tip,excised from rice (Oryza sativa L. cv. Sasanishiki) seedlingswas promoted by exogenous ethylene above 0.3 µl l–1as well as by IAA above 0.1 µM. Ethylene production ofdecapitated segments was stimulated by IAA above 1.0µM,and this was strongly inhibited by 1.0 µM AVG. AVG inhibitedthe IAA-stimulated elongation of the decapitated segment witha 4 h lag period, and this was completely recovered by ethyleneapplied at the concentration of 0.03 µl l–1, whichhad no effect on elongation without exogenous IAA. The effectsof IAA and ethylene on elongation were additive. These factsshow that ethylene produced in response to IAA promotes ricecoleoptile elongation in concert with IAA, probably by prolongingthe possible duration of the IAA-stimulated elongation, butthat they act independently of each other. Moreover, AVG stronglyinhibited the endogenous growth of coleoptile segments withtips and this effect was nullified by the exogenous applicationof 0.03 µl l–1 ethylene. These data imply that theelongation of intact rice coleoptiles may be regulated cooperativelyby endogenous ethylene and auxin in the same manner as foundin the IAA-stimulated elongation of the decapitated coleoptilesegments. Key words: oryza sativa, Ethylene, Auxin, Coleoptile growth  相似文献   

20.
研究生长素、乙烯和一氧化氮(NO)对拟南芥下胚轴插条形成不定根的调节,以及生长素和乙烯信号转导成员在IAA促进不定根形成中的作用的结果表明:拟南芥切条以IAA和硝普钠(N0供体)单独处理7d后的不定根形成均受到促进,其中以50μmol·L^-1 IAAμmol·L^-1 SNP的促进作用为最强,乙烯的促进作用不明显;生长素运输和信号转导以及乙烯信号转导相关突变体对IAA促进生根作用的敏感性比野生型有所下降,特别是IAA14功能获得型的突变体。IAA和NO在促进不定根形成中有协同效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号