首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three strains of Bradyrhizobium japonicum, I17, 110, and 61A76, were evaluated for their ability to form nodules on field-grown soybeans in soil with a highly competitive indigenous B. japonicum population. The predominant indigenous strain, 0336, in the field site used was unlike the more common isolates from Midwestern soils which belong to the 123 or 138 serogroups. This strain persisted in the soil for at least 30 years without any soybean crops. The three inoculant strains differed in their ability to compete with indigenous strains for nodule formation. Four different inoculation treatments were tested in three adjacent fields. When the amount of inoculum was increased, a higher proportion of nodules contained the inoculant strain. The most competitive inoculant strain was I17, a recent field isolate. Strain 61A76 was better than 110. There was no difference in recovery of the inoculant strains on the Hodgson or Corsoy soybean cultivars, nor was there a difference in recovery of the inoculant strains during the growing season. The vertical distribution of nodules containing the inoculant strains was affected by the method of adding the inoculant to the soil. Inoculant added to the seed furrow produced nodules mainly in the top region of the soybean root. Inoculant tilled into the soil produced nodules primarily in the bottom part of the root. The nodules that were produced in the bottom part of the root are younger and may contribute significant amounts of fixed nitrogen to the soybean during seed formation.  相似文献   

2.
Rhizobium strains used in inoculants for Trifolium spp., Medicago spp., Glycine max, and Lotus pedunculatus were isolated from nodules of these legumes grown in soils into which the rhizobia had been introduced 4 to 8 years before. Isolations were made from a total of 420 nodules. Nodule occupancy by the inoculant strains varied from 17.7% for a soybean strain to 100% in the case of L. pedunculatus whose specific rhizobia did not occur in the soils studied. In general, inoculant strains isolated from nodules did not differ in effectiveness from cultures of the same strains concurrently maintained in lyophilized form. The average effectiveness of all of the isolates (identified and unidentified) from a legume was 7.1 to 73.3% higher than that of the unidentified isolates alone, demonstrating the prolonged effect that a single-seed inoculation has on the rhizobial population in a soil which had not been planted with legumes before. Relatively weak recovery of a Rhizobium japonicum strain introduced into soil 4 years after soybean seed inoculated with a different strain had been planted in the same soil confirmed the advantage of a resident population over an introduced inoculant strain.  相似文献   

3.
Soybean (Glycine max) is an introduced crop in India. Over the years it has been regularly inoculated with indigenous rhizobia. In this study genetic diversity has been studied at a site where soybean has been regularly grown with inoculation. Rhizobia were plant trapped using soybean varieties as host, and fingerprinted using BOX-PCR. BOX-PCR genomic fingerprints of 69 isolates from the nodules of 4 soybean varieties Pusa22, Bragg, PK1041 and PK1142 showed a high level of genetic diversity. The population profiles of the 69 isolates clustered them into 10 groups. Root nodule isolates from the four varieties were Bradyrhizobium japonicum types, growing in 4–7 days with typical colonies which were found to be genetically distinct from the USDA and SEMIA strains of B. japonicum and B. elkanii. Also the genotype of the host plant seemed to be one of the factors determining the diversity. The high diversity could be attributed both to lateral transfer of genetic material between inoculant and indigenous strains and to genomic rearrangements during the adaptation to the Indian soils.  相似文献   

4.
Improvement of Rhizobium Inoculants   总被引:5,自引:4,他引:1       下载免费PDF全文
A practical approach was used to develop a Rhizobium (Bradyrhizobium) japonicum inoculant that increases soybean (Glycine max (L.) Merr.) yield in fields with indigenous Rhizobium populations, which typically outcompete strains present in existing commercial inoculants and therefore decrease the value of inoculant use. Field tests managed by several universities in the Mississippi delta region averaged a 169-kg/ha (P < 0.01) grain yield increase. The inoculant contains a mixture of mutants selected for increased nitrogen fixation ability. These mutants were derived from indigenous wild-type strains that are capable of high-level occupancy of nodules in soybean fields in the Mississippi delta region. To ensure microbiological purity, the inoculant is fermented directly in the point-of-use container with a vermiculite carrier (L. Graham-Weiss, M. L. Bennett, and A. S. Paau, Appl. Environ. Microbiol. 53:2138-2140, 1987). It should be possible to use this approach to produce more effective Rhizobium inoculants for any legume in any geographical area.  相似文献   

5.
While soybean is an exotic crop introduced in Kenya early last century, promiscuous (TGx) varieties which nodulate with indigenous rhizobia have only recently been introduced. Since farmers in Kenya generally cannot afford or access fertilizer or inoculants, the identification of effective indigenous Bradyrhizobium strains which nodulate promiscuous soybean could be useful in the development of inoculant strains. Genetic diversity and phylogeny of indigenous Bradyrhizobium strains nodulating seven introduced promiscuous soybean varieties grown in two different sites in Kenya was assayed using the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) of the 16S-23S rDNA intergenic spacer region and 16S rRNA gene sequencing. PCR-RFLP analysis directly applied on 289 nodules using Msp I distinguished 18 intergenic spacer groups (IGS) I–XVIII. Predominant IGS groups were I, III, II, IV and VI which constituted 43.9%, 24.6%, 8.3% 7.6% and 6.9% respectively of all the analyzed nodules from the two sites while IGS group VII, IX, X, XI, XII, XIV, XVI, XVII, XVIII each constituted 1% or less. The IGS groups were specific to sites and treatments but not varieties. Phylogenetic analysis of the 16S rRNA gene sequences showed that all indigenous strains belong to the genus Bradyrhizobium. Bradyrhizobium elkanii, Bradyrhizobium spp and Bradyrhizobium japonicum related strains were the most predominant and accounted for 37.9%, 34.5%, and 20.7% respectively while B. yuanmigense related accounted for 6.9% of all strains identified in the two combined sites. The diversity identified in Bradyrhizobium populations in the two sites represent a valuable genetic resource that has potential utility for the selection of more competitive and effective strains to improve biological nitrogen fixation and thus increase soybean yields at low cost.  相似文献   

6.
In the American Midwest, superior N2-fixing inoculant strains of Bradyrhizobium japonicum consistently fail to produce the majority of nodules on the roots of field-grown soybean. Poor nodulation by inoculant strains is partly due to their inability to stay abreast of the expanding soybean root system in numbers sufficient for them to be competitive with indigenous bradyrhizobia. However, certain strains are noncompetitive even when numerical dominance is not a factor. In this study, we tested the hypothesis that the nodule occupancy achieved by strains is related to their nodule-forming efficiency. The nodulation characteristics and competitiveness of nine strains of B. japonicum were compared at both 20 and 30°C. The root tip marking technique was used, with the nodule-forming efficiency of each strain estimated from the average position of the uppermost nodule and the number of nodules formed above the root tip mark. The competitiveness of the nine strains relative to B. japonicum USDA 110 was determined by using immunofluorescence to identify nodule occupants. The strains differed significantly in competitiveness with USDA 110 and in nodulation characteristics, strains that were poor competitors usually proving to be inferior in both the average position of the uppermost root nodule and the number of nodules formed above the root tip mark. Thus, competitiveness was correlated with both the average position of the uppermost nodule (r = 0.5; P = 0.036) and the number of nodules formed above the root tip mark (r = 0.64; P = 0.005), while the position of the uppermost nodule was also correlated to the percentage of plants nodulated above the root tip mark (r = 0.81; P < 0.001) and the percentage of plants nodulated on the taproot (r = 0.67; P = 0.002).  相似文献   

7.
Soil Bradyrhizobium populations limit nodule occupancy of soybean by symbiotically-superior inoculant strains throughout much of the American midwest. In this study, the competitiveness of indigenous populations of B. japonicum serocluster 123 from Waukegan and Webster soils was evaluated in growth pouches using a root-tip marking procedure. The native rhizobia were from soils incubated 0–8 h in soybean root exudate (SRE) or plant nutrient solution (PNS) prior to inoculation. Populations of serocluster 123 strains in soil and nodule occupancy by these strains were assessed using fluorescent antibodies prepared against B. japonicum USDA 123. There were no significant differences in populations that came from SRE or PNS incubated soils: both populations increased in number over the incubation period. Nodule occupancy by both populations in growth pouches was similar to that previously encountered in field studies with these two soils. With the Waukegan soil, the serocluster 123 population dominated nodulation forming 69 and 62% of taproot nodules above and below the root tip mark, respectively. However, for the more alkaline Webster soil, serocluster 123 strains were much less competitive, producing only 9 and 13%, respectively, of the nodules formed above and below the root tip mark. In growth pouches, soil populations of bradyrhizobia from the Webster soil produced significantly more nodules than those from the Waukegan soil, but both strains and a pure culture of USDA 110 had a similar distribution of nodules.  相似文献   

8.
The success of rhizobial inoculation on plant roots is often limited by several factors, including environmental conditions, the number of infective cells applied, the presence of competing indigenous (native) rhizobia, and the inoculation method. Many approaches have been taken to solve the problem of inoculant competition by naturalized populations of compatible rhizobia present in soil, but so far without a satisfactory solution. We used antibiotic resistance and molecular profiles as tools to find a reliable and accurate method for competitiveness assay between introduced Bradyrhizobium sp. strains and indigenous rhizobia strains that nodulate peanut in Argentina. The positional advantage of rhizobia soil population for nodulation was assessed using a laboratory model in which a rhizobial population is established in sterile vermiculite. We observed an increase in nodule number per plant and nodule occupancy for strains established in vermiculite. In field experiments, only 9% of total nodules were formed by bacteria inoculated by direct coating of seed, whereas 78% of nodules were formed by bacteria inoculated in the furrow at seeding. In each case, the other nodules were formed by indigenous strains or by both strains (inoculated and indigenous). These findings indicate a positional advantage of native rhizobia or in-furrow inoculated rhizobia for nodulation in peanut.  相似文献   

9.
Competition between indigenous Rhizobium leguminosarum biovar trifolii strains and inoculant strains or between mixtures of inoculant strains was assessed in field and growth-room studies. Strain effectiveness under competition was compared with strain performance in the absence of competition. Field inoculation trials were conducted at Elora, Ontario, Canada, with soil containing indigenous R. leguminosarum biovar trifolii. The indirect fluorescent-antibody technique was used for the identification of nodule occupants. Treatments consisted of 10 pure strains, a commercial peat inoculant containing a mixture of strains, and an uninoculated control. Inoculant strains occupied 17.5 to 85% of nodules and resulted in increased dry weight and nitrogen content, as compared with the uninoculated control. None of the strains was capable of completely overcoming resident rhizobia, which occupied, on average, 50% of the total nodules tested. In growth-room studies single commercial strains were mixed in all possible two-way combinations and assessed in a diallel mating design. Significant differences in plant dry weight of red clover were observed among strain combinations. Specific combining ability effects were significant at the 10% level, suggesting that the effectiveness of strain mixtures depended on the specific strain combinations. Strains possessing superior effectiveness and competitive abilities were identified by field and growth-room studies. No relationship was detected between strain effectiveness and competitive ability or between strain recovery and host cultivar. The concentration of indigenous populations was not considered to be a limiting factor in the recovery of introduced strains at this site.  相似文献   

10.
Moawad  H.  Badr El-Din  S.M.S.  Abdel-Aziz  R.A. 《Plant and Soil》1998,204(1):95-106
The diversity of rhizobia nodulating common bean ( Phaseolus vulgaris), berseem clover (Trifolium alexanderinum) and lentil (Lens culinaris) was assessed using several characterization techniques, including nitrogen fixation efficiency, intrinsic antibiotic-resistance patterns (IAR), plasmid profiles, serological markers and rep-PCR fingerprinting. Wide diversity among indigenous rhizobial populations of the isolates from lentil, bean and clover was found. Strikingly, a large percentage of the indigenous rhizobial population was extremely poor at fixing nitrogen. This emphasizes the need to increase the balance of highly efficient strains within the rhizobial population. Use of high-quality inocula strains that survive and compete with other less-desired and less-efficient N2-fixing rhizobia represents the best approach to increase biological nitrogen fixation of the target legume. In field-grown lentils, the inoculant strains were not able to outcompete the indigenous rhizobia and the native lentil rhizobia occupied 76–88% of the total nodules formed on inoculated plants. Nitrogen fixation by lentils, estimated using the 15N isotope dilution technique, ranged between 127 to 139 kg ha-1 in both inoculated and un-inoculated plants. With berseem clover, the inoculant strains were highly competitive against indigenous rhizobia and occupied 52–79% of all nodules. Inoculation with selected inocula improved N2 fixation by clover from 162 to 205 kg ha-1 in the three cuts as compared with 118 kg ha-1 in the un-inoculated treatment. The results also indicated the potential for improvement of N2 fixation by beans through the application of efficient N2-fixing rhizobia.  相似文献   

11.
One hundred isolates were trapped by soybean (Glycine max) plants inoculated with a soil from the Cerrados, the main producing area in Brazil. The soil was originally void of rhizobia able to nodulate soybean, and 15 years before received inoculant containing Bradyrhizobium elkanii strains SEMIA 587 and SEMIA 5019; the area has been annually cropped with soybean since then, but with no further inoculation for the past 7 years. Enormous diversity was observed among the isolates, with thirteen serologically distinct groups, twelve protein and seven lipopolysaccharide profiles; no more than five isolates shared similar characteristics. An unexpected feature was that 48% of the isolates showed multiple reactions with the antisera to the serogroups established in the soils. Also 40% of the isolates reacted with the antiserum to B. japonicum strain SEMIA 566, that has never been introduced into the soil, probably due to dispersion from other cropping areas, associated with its high saprophytic competence; 13% of the isolates did not react with any of the antisera. Nodulation and N2 fixation capacity also varied considerably among the isolates. Although one third of the isolates were fast growers with an acid reaction in vitro, and many formed pseudo-nodules on common bean (Phaseolus vulgaris), they shared several properties with the Bradyrhizobium inoculant strains. A high level of genetic diversity was confirmed when the DNAs were amplified with BOX and RPO1 primers, and several isolates were positioned in far different clusters in the analysis of interspersed repetitive or nif-directed sequences. Moreover, serological properties showed higher correlation with BOX than with RPO1 products. The high diversity could be attributed both to lateral transfer of genetic material between inoculant and indigenous strains and to genomic rearrangements during the adaptation to the Cerrados, and may play an important role as a biological buffer, avoiding the dominance of a particular strain.  相似文献   

12.
The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates'' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations.  相似文献   

13.
The importance of horizontal gene transfer (HGT) in the evolution and speciation of bacteria has been emphasized; however, most studies have focused on genes clustered in pathogenesis and very few on symbiosis islands. Both soybean (Glycine max [L.] Merrill) and compatible Bradyrhizobium japonicum and Bradyrhizobium elkanii strains are exotic to Brazil and have been massively introduced in the country since the early 1960s, occupying today about 45% of the cropped land. For the past 10 years, our group has obtained several isolates showing high diversity in morphological, physiological, genetic, and symbiotic properties in relation to the putative parental inoculant strains. In this study, parental strains and putative natural variants isolated from field-grown soybean nodules were genetically characterized in relation to conserved genes (by repetitive extragenic palindromic PCR using REP and BOX A1R primers, PCR-restriction fragment length polymorphism, and sequencing of the 16SrRNA genes), nodulation, and N2-fixation genes (PCR-RFLP and sequencing of nodY-nodA, nodC, and nifH genes). Both genetic variability due to adaptation to the stressful environmental conditions of the Brazilian Cerrados and HGT events were confirmed. One strain (S 127) was identified as an indigenous B. elkanii strain that acquired a nodC gene from the inoculant B. japonicum. Another one (CPAC 402) was identified as an indigenous Sinorhizobium (Ensifer) fredii strain that received the whole symbiotic island from the B. japonicum inoculant strain and maintained an extra copy of the original nifH gene. The results highlight the strategies that bacteria may commonly use to obtain ecological advantages, such as the acquisition of genes to establish effective symbioses with an exotic host legume.  相似文献   

14.
A field experiment was conducted to assess the response to inoculation with rhizobia in a clay loam soil of the Nile Delta using faba bean (Vicia faba) for two successive winter seasons (1985/6 and 1986/7). Three selected strains of Rhizobium leguminosarum, TAL 634, NRC 65 and TAL 1400, were used singly or in combination as peat-based inocula in 1985/6 winter season. Strain TAL 1400 was replaced by strain F9 in the 1986/7 winter season. A significant seed yield response was obtained only with strain TAL 1400, in the 1985/6 season. In the 1986/7 season, no significant yield response was observed with any of the strains. The serotyping of nodules collected in the 1985/6 season showed that strain TAL 1400 was more competitive than either the indigenous rhizobia or the two inoculant strains. However, the majority of nodules formed in the 1986/7 season were formed from strains other than the inoculant ones.  相似文献   

15.
The successful nodulation of legumes by a Rhizobium strain is determined by the competitive ability of that strain against the mixture of other native and inoculant rhizobia. Competition among six Leucaena rhizobial strains in single and multistrain inoculants were studied. Field inoculation trials were conducted in an oxisol and a mollisol soil, both of which contained indigenous Leucaena-nodulating rhizobia. Strain-specific fluorescent antibodies were used for the identification of the strains in Leucaena nodules. Mixtures of three recommended inoculum strains for Leucaena spp. (TAL82, TAL582, and TAL1145) were used in peat-based inocula either alone or with one of the three other strains isolated from the sites, B213, B214, and B215. Each of these latter three strains was also used as single-strain inocula to study their competition with the native rhizobia in the two soil systems. In the oxisol soil, strains B213 and B215, when used as single-strain inocula, outcompeted the native rhizobia and formed 92 and 62% of the nodules, respectively. Strain B214 was the least competitive in oxisol soil, where it formed 30% of the nodules, and the best in mollisol soil, where it formed 70% of the nodules. The most successful competitor for nodulation in multistrain inocula was strain TAL1145, which outcompeted native and other inoculum Leucaena rhizobia in both soils. None of the strains in single or multistrain inoculants was capable of completely overcoming the resident rhizobia, which formed 4 to 70% of the total nodules in oxisol soil and 12 to 72% in mollisol soil. No strong relationship was detected between the size of the rhizosphere population of a strain and its successful occupation of nodules.  相似文献   

16.
The displacement of indigenous Bradyrhizobium japonicum in soybean nodules with more effective strains offers the possibility of enhanced N2 fixation in soybean (Glycine max (L.) Merr.). Our objective was to determine whether the wild soybean (G. soja Sieb. & Zucc.) genotype PI 468397 would cause reduced competitiveness of important indigenous B. japonicum strains USDA 31, 76, and 123 and thereby permit nodulation by Rhizobium fredii, the fast-growing microsymbiont of soybean. In an initial experiment, PI 468397 nodulated and fixed moderate amounts of N2 with USDA 31 and 76 but, despite the formation of nodules, fixed essentially no N2 with USDA 123. In contrast, PI 468397 formed a highly effective symbiosis with R. fredii strain USDA 193. In two subsequent experiments, Williams soybean and PI 468397 were grown in a pasteurized soil mixture or in soybean rhizobium-free soil and inoculated with both USDA 123 and USDA 193. In each experiment, more than 90% of the nodules of Williams contained USDA 123, while only a maximum of 2% were occupied with USDA 193. In contrast, in the two experiments, 16 and 11%, respectively, of the nodules produced on PI 468397 were occupied by USDA 123, while in both experiments 87% contained USDA 193. Thus, in relation to the cultivar Williams, which is commonly grown and used as a parent in soybean breeding programs in the United States, PI 468397 substantially reduced the competitive ability of B. japonicum strain USDA 123 in relation to R. fredii strain USDA 193.  相似文献   

17.
The pigeon pea strains of Bradyrhizobium CC-1, CC-8, UASGR(S), and F4 were evaluated for nodulation, effectiveness for N2 fixation, and H2 oxidation with homologous and nonhomologous host plants. Strain CC-1 nodulated Macroptilium atropurpureum, Vigna unguiculata, Glycine max, and G. soja but did not nodulate Pisum sativum, Phaseolus vulgaris, Trigonella foenum-graecum, and Trifolium repens. Strain F4 nodulated G. max cv. Peking and PI 434937 (Malayan), but the symbioses formed were poor. Similarly, G. max cv. Peking, cv. Bragg, PI 434937, PR 13-28-2-8-7, and HM-1 were nodulated by strain CC-1, and symbioses were also poor. G. max cv. Williams and cv. Clark were not nodulated. H2 uptake activity was expressed with pigeon pea and cowpea, but not with soybean. G. max cv. Bragg grown in Bangalore, India, in local soil not previously exposed to Bradyrhizobium japonicum formed nodules with indigenous Bradyrhizobium spp. Six randomly chosen isolates, each originating from a different nodule, formed effective symbioses with pigeon pea host ICPL-407, nodulated PR 13-28-2-8-7 soybean forming moderately effective symbioses, and did not nodulate Williams soybean. These results indicate the six isolates to be pigeon pea strains although they originated from soybean nodules. Host-determined nodulation of soybean by pigeon pea Bradyrhizobium spp. may depend upon the ancestral backgrounds of the cultivars. The poor symbioses formed by the pigeon pea strains with soybean indicate that this crop should be inoculated with B. japonicum for its cultivation in soils containing only pigeon pea Bradyrhizobium spp.  相似文献   

18.
In the American Midwest, superior inoculant rhizobia applied to soybeans usually occupy only 5 to 20% of nodules, and response to inoculation is the exception rather than the rule. Attempts to overcome this problem have met with limited success. We evaluated the ability of Bradyrhizobium japonicum, supplied as a seed coat inoculant, to stay abreast of the infectible region of the developing soybean root system. The rhizoplane population of the inoculant strain declined with distance from site of placement, the decrease being more pronounced on lateral than on taproots. This decline was paralleled by a decrease in inoculant-strain nodule occupancy. Inoculant bradyrhizobia contributed little to nodulation of lateral roots, which at pod-fill accounted for more than 50% of nodule number and mass, and were major contributors to acetylene reduction activity. From these data, it appears that inoculant bradyrhizobia are competitive with indigenous soil strains at the point of placement in the soil but have limited mobility and so are incapable of sustaining high populations throughout the developing root system. The result is low nodule occupancy by the inoculant strain in the tapand lateral roots. Future studies should address aspects of inoculant placement and establishment.  相似文献   

19.
A phage typing system was used to evaluate the composition of indigenous populations of Rhizobium meliloti inhabiting nodules of Medicago sativa cultivars grown with and without inoculation at two field sites during 1983 and 1984. Soil at both locations contained established populations of R. meliloti at planting. Analysis of 1,920 nodule isolates revealed 55 unique phage types of indigenous R. meliloti at one site and 65 indigenous types at the other location. The distributions of phage types differed markedly between locations. At one site, the nodule population was dominated by two phage types; seven others occurred consistently but at lower frequency, and the remainder were encountered infrequently. No indigenous types predominated at the other location, although nine occurred more frequently than the remaining types. Indigenous R. meliloti predominated in nodules from inoculated plots at both sites, with inoculant recovery varying between 10 and 38% in each of two years. The frequency of occurrence of particular phage types at one location was significantly influenced by both M. sativa cultivar and inoculation. At this location, the interaction of cultivar and inoculation on the incidence of phage types suggests that the presence of an inoculant strain differentially affected nodule occupancy of M. sativa cultivars by members of the indigenous R. meliloti population. At both sites, the frequency of specific phage types differed between years. The data emphasize the importance of understanding the ecology and characteristics of indigenous Rhizobium populations as a prerequisite for elucidating problems of inoculant establishment and persistence in competitive situations.  相似文献   

20.
Organic farmers recognize the importance of rhizobial associations with legume plants to help meet N fertility and plant productivity needs. A field experiment was done at three organic fields in Minnesota to assess the effect of indigenous Bradyrhizobium japonicum ORGS3 and ORGS5 and reference USDA 110 strains on the growth and yield performance of soybean. Soybean genotypes MN1505SP and Lambert inoculated with B. japonicum ORGS3 had significantly greater (P < 0.01) nodule numbers (42.1 ± 2.5), herbage N-contents (4.02 ± 0.01%), dry biomass (12.60 ± 1.45 g), and plant populations (117,890 ± 288.13 plant/acre) compared with the un-inoculated control. Grain yields were not affected by inoculation. Most nodules formed on non-inoculated Lambert (70%) and MN1505SP (53%) were occupied by strain ORGS5. The inoculant strains USDA110 and ORGS5 increased nodule occupancy by 10% on MN1505SP and Lambert. In contrast, strain ORGS3, and the combination of strains ORGS5 plus ORGS3, increased nodules occupancy on Lambert by 23 and 20%, respectively, compared with the control. The majority of nodules on Lambert (59%) and MN1505SP (52%) in the Farmington and Lamberton fields, respectively, were occupied by ORGS5. In contrast, 41 and 45% of nodules formed on Lambert and MN1505SP at Rosemount, respectively, were occupied by strain ORGS3. The lowest percentage of nodules formed on Lambert (4%) and MN1505SP (5%), in the Farmington field, were occupied by USDA110. These results showed that Bradyrhizobium strains ORGS3 and ORGS5 can be used to enhance N fixation and productivity of organically-grown soybeans grown in Minnesota fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号