首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV)-specific T cell responses have been suggested to play significant role in viral clearance. Dendritic cells (DCs) are professional APCs that play a major role in priming, initiating, and sustaining strong T cell responses against pathogen-derived Ags. DCs also have inherent capabilities of priming naive T cells against given Ags. Recombinant adenoviral vectors containing HCV-derived Core and NS3 genes were used to endogenously express HCV Core and NS3 proteins in human DCs. These HCV Ags expressing DCs were used to prime and stimulate autologous T cells obtained from uninfected healthy donors. The DCs expressing HCV Core or NS3 Ags were able to stimulate T cells to produce various cytokines and proliferate in HCV Ag-dependent manner. Evidence of both CD4(+) and CD8(+) T cell responses against HCV Core and NS3 generated in vitro were obtained by flow cytometry and Ab blocking experiments. Further, in secondary assays, the T cells primed in vitro exhibited HCV Ag-specific proliferative responses against recombinant protein Ags and also against immunodominant permissive peptide epitopes from HCV Ags. In summary, we demonstrate that the dendritic cells expressing HCV Ags are able to prime the Ag-specific T cells from uninfected healthy individuals in vitro. These studies have implications in designing cellular vaccines, T cell adoptive transfer therapy or vaccine candidates for HCV infection in both prophylactic and therapeutic settings.  相似文献   

2.
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.  相似文献   

3.
Processing of exogenous protein Ags by APC leads predominantly to presentation of peptides on class II MHC and, thus, stimulation of CD4+ T cell responses. However, "cross-priming" can also occur, whereby peptides derived from exogenous Ags become displayed on class I MHC molecules and stimulate CD8+ T cell responses. We compared the efficiency of cross-priming with exogenous proteins to use of peptide Ags in human whole blood using a flow cytometry assay to detect T cell intracellular cytokine production. CD8+ T cell responses to whole CMV proteins were poorly detected (compared with peptide responses) in most CMV-seropositive donors. Such responses could be increased by using higher doses of Ag than were required to achieve maximal CD4+ T cell responses. A minority of donors displayed significantly more efficient CD8+ T cell responses to whole protein, even at low Ag doses. These responses were MHC class I-restricted and dependent upon proteosomal processing, indicating that they were indeed due to cross-priming. The ability to efficiently cross-prime was not a function of the number of dendritic cells in the donor's blood. Neither supplementation of freshly isolated dendritic cells nor use of cultured, Ag-pulsed dendritic cells could significantly boost CD8 responses to whole-protein Ags in poorly cross-priming donors. Interestingly, freshly isolated monocytes performed almost as well as dendritic cells in inducing CD8 responses via cross-priming. In conclusion, the efficiency of cross-priming appears to be poor in most donors and is dependent upon properties of the individual's APC and/or T cell repertoire. It remains unknown whether cross-priming ability translates into any clinical advantage in ability to induce CD8+ T cell responses to foreign Ags.  相似文献   

4.
Polyvalent mosaic HIV immunogens offer a potential solution for generating vaccines that can elicit immune responses against genetically diverse viruses. However, it is unclear whether key T cell epitopes can be processed and presented from these synthetic Ags and recognized by epitope-specific human T cells. In this study, we tested the ability of mosaic HIV immunogens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors to process and present major HIV clade B and clade C CD8 T cell epitopes in human cells. A bivalent mosaic vaccine expressing HIV Gag sequences was used to transduce PBMCs from 12 HIV-1-infected individuals from the United States and 10 HIV-1-infected individuals from South Africa; intracellular cytokine staining, together with tetramer staining, was used to assess the ability of mosaic Gag Ags to stimulate pre-existing memory responses compared with natural clade B and C vectors. Mosaic Gag Ags expressed all eight clade B epitopes tested in 12 United States subjects and all 5 clade C epitopes tested in 10 South African subjects. Overall, the magnitude of cytokine production induced by stimulation with mosaic Ags was comparable to clade B and clade C Ags tested, but the mosaic Ags elicited greater cross-clade recognition. Additionally, mosaic Ags induced HIV-specific CD4 T cell responses. Our studies demonstrate that mosaic Ags express major clade B and clade C viral T cell epitopes in human cells, as well as support the evaluation of mosaic HIV-1 vaccines in humans.  相似文献   

5.
Ag mannosylation represents a promising strategy to augment vaccine immunogenicity by targeting Ag to mannose receptors (MRs) on dendritic cells. Because fungi naturally mannosylate proteins, we hypothesized that Ags engineered in fungi would have an enhanced capacity to stimulate T cell responses. Using the model Ag OVA, we generated proteins that differentially expressed N- and O-linked mannosylation in the yeast Pichia pastoris and compared them to their unglycosylated counterparts produced in Escherichia coli. We found that yeast-derived OVA proteins containing N-linkages, extensive O-linkages, or both were more potent than the unmannosylated Ags at inducing OVA-specific CD4+ T cell proliferation. This elevated response to fungal Ags was inhibited by mannan, suggesting involvement of MRs. However, the macrophage MR (CD206) was not essential, because macrophage MR-deficient dendritic cells were fully competent in presenting yeast-derived OVA Ags. Thus, the use of fungal glycosylation to provide N-linked and/or extensive O-linked mannosylation increased the capacity of the model Ag OVA to stimulate Ag-specific T cell responses in an MR-dependent manner. These data have implications for vaccine design by providing proof of principle that yeast-derived mannosylation can enhance immunogenicity.  相似文献   

6.
The generation of adaptive immune responses is thought to require the presence of adjuvants. Although microbial adjuvants are well characterized, little is known about what provides the adjuvant effect in responses to transplanted cells or in autoimmune diseases. It had been postulated that, in these situations, injured cells instead released "endogenous adjuvants." We previously identified uric acid as an endogenous adjuvant for coinjected Ags. We now report that elimination of uric acid reduced the generation of CTL to an Ag in transplanted syngeneic cells and the proliferation of autoreactive T cells in a transgenic diabetes model. In contrast, uric acid depletion did not reduce the stimulation of T cells to mature APCs or when endogenous APCs were activated with anti-CD40 Ab. These findings support the concept that danger signals contribute to the T cell responses to cell-associated Ags by activating APCs and identify uric acid as one of these signals.  相似文献   

7.
Controlling the cross-presentation of exogenous Ags to CD8+ T cells represents a major step for designing new vaccination strategies. Whereas several recombinant pseudo-viral particles have been used as delivery systems for triggering potent CTL responses to heterologous exogenous Ags, the adjuvant properties of virus-like particles (VLPs) themselves were little questioned. Here, we analyzed the contribution of the porcine parvovirus (PPV)-VLPs to the induction of protective cellular responses to exogenous Ags carried by an independent delivery system. Microspheres, which are known to transfer exogenous Ags into the MHC class I pathway, were chosen for delivering the immunodominant OVA(257-264) CD8+ T cell epitope (B-OVAp). This delivery system fulfills the requirements in terms of cross-presentation, but fails to induce cross-priming of specific CD8+ T cells. Coinjection of PPV-VLPs with B-OVAp results in the priming of potent CTL responses and type 1-biased immunity in a CD4- and CD40-independent manner, as efficiently as the recombinant PPV-VLPs carrying the same epitope (PPV-OVAp). Furthermore, vaccination with PPV-VLPs and B-OVAp was fully efficient to protect mice against the development of OVA-bearing melanoma. These findings indicate that PPV-VLPs act not only as a delivery system but also as a strong adjuvant when independently provided with exogenous Ag. Thus, dissociation between delivery system and adjuvant would provide a more flexible and reliable system to induce potent and protective CTL.  相似文献   

8.
Replication of human cytomegalovirus is controlled by a vigorous CD8 T cell response. The persistent nature of infection is believed to periodically stimulate T cell responses resulting in considerable expansions of virus-specific CD8 T cells over time. In this study, we describe the magnitude and breadth of CD8 T cell responses against the immunodominant viral Ags, IE-1 and pp65, in acute and long-term infection using the IFN-gamma ELISPOT assay. Simultaneously, we have identified several novel MHC class I restricted CD8 T cell epitopes. Acute phase responses in immunocompetent donors appear to be extremely focused as early as 1 week post diagnosis with dominant peptide-specific responses observed against both proteins. These dominant responses remain detectable at all later time points over a 4-year follow-up. Interestingly the IE-1 responses show an increase over time whereas the pp65 responses do not, which contrasts with data showing that responses against both Ags are elevated in elderly individuals. We also observe the rapid emergence of an effector memory phenotype for virus-specific CD8 T cells as observed in persistent infection. Over time the revertant CD45RA(pos) effector cell population is also expanded, and this is more evident in the preferentially expanded IE-1 responses. We postulate that periodic low-level virus reactivation after the acute infection phase preferentially stimulates these responses whereas pp65-specific T cell expansions probably occur during the infrequent episodes of lytic viral replication or secondary infection.  相似文献   

9.
Vaccination against cancer or intracellular pathogens requires stimulation of class I-restricted CD8(+) T cells. It is therefore important to develop Ag delivery vectors that will promote cross-presentation by APCs and stimulate appropriate inflammatory responses. Toward this goal, we tested the potential of Escherichia coli as an Ag delivery vector in in vitro human culture. Bacteria expressing enhanced green fluorescent protein were internalized efficiently by dendritic cells, as shown by flow cytometry and fluorescence microscopy. Phenotypic changes in DC were observed, including up-regulation of costimulatory molecules and IL-12p40 production. We tested whether bacteria expressing recombinant Ags could stimulate human T cells using the influenza matrix protein as a model Ag. Specific responses against an immunodominant epitope were seen using IFN-gamma ELISPOT assays when the matrix protein was coexpressed with listeriolysin O, but not when expressed alone. THP-1 macrophages were also capable of stimulating T cells after uptake of bacteria, but showed slower kinetics and lower overall levels of T cell stimulation than dendritic cells. Increased phagocytosis of bacteria induced by differentiation of THP-1 increased their ability to stimulate T cells, as did opsonization. Presentation was blocked by proteasome inhibitors, but not by lysosomal protease inhibitors leupeptin and E64. These results demonstrate that recombinant E. coli can be engineered to direct Ags to the cytosol of human phagocytic APCs, and suggest possible vaccine strategies for generating CD8(+) T cell responses against pathogens or tumors.  相似文献   

10.
EBV is a candidate trigger of rheumatoid arthritis (RA). We determined both EBV-specific T cell and B cell responses and cell-associated EBV DNA copies in patients with RA and demographically matched healthy virus carriers. Patients with RA showed increased and broadened IgG responses to lytic and latent EBV-encoded Ags and 7-fold higher levels of EBV copy numbers in circulating blood cells. Additionally, patients with RA exhibited substantial expansions of CD8(+) T cells specific for pooled EBV Ags expressed during both B cell transformation and productive viral replication and the frequency of CD8(+) T cells specific for these Ags correlated with cellular EBV copy numbers. In contrast, CD4(+) T cell responses to EBV and T cell responses to human CMV Ags were unchanged, altogether arguing against a defective control of latent EBV infection in RA. Our data show that the regulation of EBV infection is perturbed in RA and suggest that increased EBV-specific effector T cell and Ab responses are driven by an elevated EBV load in RA.  相似文献   

11.
The efficacy of tumor cell vaccination largely depends on the maturation and activation status of the dendritic cell. Here we investigated the ability of soluble and tumor cell-associated dsRNA to serve as an adjuvant in the induction of protective adaptive antitumor responses. Our data showed that cell-associated dsRNA, but not soluble dsRNA, enhanced both tumor-specific CD8(+) and CD4(+) T cell responses. The cell-associated dsRNA increased the clonal burst of tumor-specific CD8(+) T cells and endowed them with an enhanced capacity for expansion upon a secondary encounter with tumor Ags, even when the CD8(+) T cells were primed in the absence of CD4(+) T cell help. The adjuvant effect of cell-associated dsRNA was fully dependent on the expression of TLR3 by the APCs and their subsequent production of type I IFNs, as the adjuvant effect of cell-associated dsRNA was completely abrogated in mice deficient in TLR3 or type I IFN signaling. Importantly, treatment with dsRNA-associated tumor cells increased the number of tumor-infiltrating lymphocytes and enhanced the survival of tumor-bearing mice. The data from our studies suggest that using cell-associated dsRNA as a tumor vaccine adjuvant may be a suitable strategy for enhancing vaccine efficacy for tumor cell therapy in cancer patients.  相似文献   

12.
Group 1 CD1 molecules have been shown to present lipid and glycolipid Ags of mycobacteria to human T cells. However, a suitable animal model for the investigation of this component of antimycobacterial immunity has not yet been established. Previously, we found that guinea pigs express multiple isoforms of group 1 CD1 proteins that are homologous to human CD1b and CD1c. In this study, we show that CD1-restricted T cell responses can be generated in guinea pigs following immunization with lipid Ags from Mycobacterium tuberculosis. Splenic T cells from lipid Ag-immunized guinea pigs showed strong proliferative responses to total lipid Ags and partially purified glycolipid fractions from M. tuberculosis. These lipid Ag-reactive T cells were enriched in CD4-negative T cell fractions and showed cytotoxic activity against CD1-expressing guinea pig bone marrow-derived dendritic cells pulsed with M. tuberculosis lipid Ags. Using guinea pig cell lines transfected with individual CD1 isoforms as target cells in cytotoxic T cell assays, we found that guinea pig CD1b and CD1c molecules presented M. tuberculosis glycolipid Ags to T cells raised by mycobacterial lipid immunization. These results were confirmed using a T cell line derived from M. tuberculosis lipid Ag-immunized guinea pigs, which also showed CD1-restricted responses and cytolytic activity. Our results demonstrate that CD1-restricted responses against microbial glycolipid Ags can be generated in vivo by specific immunization and provide support for the use of the guinea pig as a relevant small animal model for the study of CD1-restricted immune responses to mycobacterial pathogens.  相似文献   

13.
Secreted or nonsecreted Ag expressed by recombinant Listeria monocytogenes can prime CD8 T cells. However, Ag-specific memory CD8 T cells confer protection against bacteria secreting Ag, but not against bacteria expressing the nonsecreted form of the same Ag. This dichotomy may be explained by a long-standing hypothesis that nonsecreted Ags are less effective than secreted Ags at inducing a protective immune response at the onset of infection. We tested this hypothesis by examining whether these two different forms of Ag induce different primary and secondary CD8 T cell responses. The primary responses to secreted and nonsecreted Ags expanded and contracted almost synchronously, although the responses to nonsecreted Ags were of lower magnitude. These results demonstrate that the kinetics of the CD8 T cell response are similar regardless of whether Ag is accessible to the endogenous MHC class I pathway or can only be presented through cross-presentation. No differences were detected in the CD8 T cell recall response to L. monocytogenes expressing secreted or nonsecreted Ags. Nonsecreted Ags are as effective as secreted Ags at the induction of a rapid recall response by memory CD8 T cells. Thus, the inability of nonsecreted bacterial proteins to serve as protective Ags cannot be attributed to a defective CD8 T cell response.  相似文献   

14.
The unique glycerolipids of ARCHAEA: can be formulated into vesicles (archaeosomes) with potent adjuvant activity. We studied the effect of archaeosomes on APCs to elucidate the mechanism(s) of adjuvant action. Exposure of J774A.1 macrophages to archaeosomes in vitro resulted in up-regulation of B7.1, B7.2, and MHC class II molecules to an extent comparable to that achieved with LPS. Similarly, incubation of bone marrow-derived DCs with archaeosomes resulted in enhanced expression of MHC class II and B7.2 molecules. In contrast, conventional liposomes made from ester phospholipids failed to modulate the expression of these activation markers. APCs treated with archaeosomes exhibited increased TNF production and functional ability to stimulate allogenic T cell proliferation. More interestingly, archaeosomes enhanced APC recruitment and activation in vivo. Intraperitoneal injection of archaeosomes into mice led to recruitment of Mac1alpha(+), F4/80(+) and CD11c(+) cells. The expression of MHC class II on the surface of peritoneal cells was also enhanced. Furthermore, peritoneal cells from archaeosome-injected mice strongly enhanced allo-T cell proliferation and cytokine production. The ability of archaeosome-treated APCs to stimulate T cells was restricted to Mac1alpha(high), B220(-) cells in the peritoneum. These Mac1alpha(high) cells in the presence of GM-CSF gave rise to both F4/80(+) (macrophage) and CD11c(+) (dendritic) populations. Overall, the activation of APCs correlated to the ability of archaeosomes to induce strong humoral, T helper, and CTL responses to entrapped Ag. Thus, the recruitment and activation of professional APCs by archaeosomes constitutes an efficient self-adjuvanting process for induction of Ag-specific responses to encapsulated Ags.  相似文献   

15.
Oral administration of soluble protein Ags typically induces Ag-specific systemic nonresponsiveness. However, we have found that feeding a model food protein, OVA, to helminth-infected mice primes for a systemic OVA-specific Th2 response. In this report we show that, in addition to creating a Th2-priming cytokine environment, helminth infection up-regulates costimulatory molecule expression on mucosal, but not peripheral, APCs. To examine the consequences of mucosal infection for the T cell response to orally administered Ag, we adoptively transferred transgenic, OVA-specific, T cells into normal mice. We found that helminth infection enhances the expansion and survival of transgenic T cells induced by Ag feeding. Transfer of 5,6-carboxyfluorescein diacetate succinimidyl ester-labeled donor cells showed that T cell proliferation in response to Ag feeding takes place primarily in the mesenteric lymph nodes. Upon subsequent peripheral exposure to Ag in adjuvant, the proliferative capacity of the transferred transgenic T cells was reduced in noninfected mice that had been fed OVA. Helminth infection abrogated this reduction in proliferative capacity. Our data suggests that enteric infection can act as an adjuvant for the response to dietary Ags and has implications for allergic responses to food and the efficacy of oral vaccination.  相似文献   

16.
Replication-deficient adenovirus and modified vaccinia virus Ankara (MVA) vectors expressing single pre-erythrocytic or blood-stage Plasmodium falciparum Ags have entered clinical testing using a heterologous prime-boost immunization approach. In this study, we investigated the utility of the same immunization regimen when combining viral vectored vaccines expressing the 42-kDa C terminus of the blood-stage Ag merozoite surface protein 1 and the pre-erythrocytic Ag circumsporozoite protein in the Plasmodium yoelii mouse model. We find that vaccine coadministration leads to maintained Ab responses and efficacy against blood-stage infection, but reduced secondary CD8(+) T cell responses against both Ags and efficacy against liver-stage infection. CD8(+) T cell interference can be minimized by coadministering the MVA vaccines at separate sites, resulting in enhanced liver-stage efficacy in mice immunized against both Ags compared with just one. CD8(+) T cell interference (following MVA coadministration as a mixture) may be caused partly by a lack of physiologic space for high-magnitude responses against multiple Ags, but is not caused by competition for presentation of Ag on MHC class I molecules, nor is it due to restricted T cell access to APCs presenting both Ags. Instead, enhanced killing of peptide-pulsed cells is observed in mice possessing pre-existing T cells against two Ags compared with just one, suggesting that priming against multiple Ags may in part reduce the potency of multiantigen MVA vectors to stimulate secondary CD8(+) T cell responses. These data have important implications for the development of a multistage or multicomponent viral vectored malaria vaccine for use in humans.  相似文献   

17.
Lymphocyte activation gene-3 (LAG-3) is an MHC class II ligand expressed on activated T and NK cells. A LAG-3Ig fusion protein has been used in mice as an adjuvant protein to induce antitumor responses and specific CD8 and CD4 Th1 responses to nominal Ags. In this work we report on the effect of LAG-3Ig on the maturation and activation of human monocyte-derived dendritic cells (DC). LAG-3Ig binds MHC class II molecules expressed in plasma membrane lipid rafts on immature human DC and induces rapid morphological changes, including the formation of dendritic projections. LAG-3Ig markedly up-regulates the expression of costimulatory molecules and the production of IL-12 and TNF-alpha. Consistent with this effect on DC maturation, LAG-3Ig disables DC in their capacity to capture soluble Ags. These events are associated with the acquisition of professional APC function, because LAG-3Ig increases the capacity of DC to stimulate the proliferation and IFN-gamma response by allogeneic T cells. These effects were not observed when using ligation of MHC class II by specific mAb. Class II-mediated signals induced by a natural ligand, LAG-3, lead to complete maturation of DC, which acquire the capacity to trigger naive T cells and drive polarized Th1 responses.  相似文献   

18.
Although endocytosed proteins are commonly presented via the class II MHC pathway to stimulate CD4(+) T cells, professional APCs can also cross-present Ags, whereby these exogenous peptides can be complexed with class I MHC for cross-priming of CD8(+) T cells. Whereas the ability of dendritic cells (DCs) to cross-present Ags is well documented, it is not known whether other APCs may also play a role, or what is the relative contribution of cross-priming to the induction of acquired immunity after DNA immunization. In this study, we compared immune responses generated after gene gun vaccination of mice with DNA vaccine plasmids driven by the conventional CMV promoter, the DC-specific CD11c promoter, or the keratinocyte-specific K14 promoter. The CD11c promoter achieved equivalent expression in CD11c(+) DCs in draining lymph nodes over time, as did a conventional CMV-driven plasmid. However, immunization with DC-restricted DNA vaccines failed to generate protective humoral or cellular immunity to model Ags influenza hemagglutinin and OVA, despite the ability of CD11c(+) cells isolated from lymph nodes to stimulate proliferation of Ag-specific T cells directly ex vivo. In contrast, keratinocyte-restricted vaccines elicited comparable T and B cell activity as conventional CMV promoter-driven vaccines, indicating that cross-priming plays a major role in the generation of immune responses after gene gun immunization. Furthermore, parallel studies in B cell-deficient mu-MT mice demonstrated that B lymphocytes, in addition to DCs, mediate cross-priming of Ag-specific T cells. Collectively, these data indicate that broad expression of the immunogen is required for optimal induction of protective acquired immunity.  相似文献   

19.
The generation of T cell immunity requires the acquisition and presentation of Ag on bone marrow-derived APCs. Dendritic cells (DC) are believed to be the most potent bone marrow-derived APCs, and the only ones that can stimulate naive T cells to productively respond to Ags. Because macrophages (Mphi) are bone marrow-derived APCs that are also found in tissues and lymphoid organs, can acquire and present Ag, and can express costimulatory molecules, we have investigated their potential to stimulate primary T cell responses in vivo. We find that both injected Mphi and DCs can migrate from peripheral tissues or blood into lymphoid organs. Moreover, injection of peptide-pulsed Mphi or DCs into mice stimulates CD8 T cells to proliferate, express effector functions including cytokine production and cytolysis, and differentiate into long-lived memory cells. Mphi and DCs stimulate T cells directly without requiring cross-presentation of Ag on host APCs. Therefore, more than one type of bone marrow-derived APC has the potential to prime T cell immunity. In contrast, another bone marrow-derived cell, the T lymphocyte, although capable of presenting Ag and homing to the T cell areas of lymphoid organs, is unable to stimulate primary responses. Because Mphi can be very abundant cells, especially at sites of infection and inflammation, they have the potential to play an important role in immune surveillance and the initiation of T cell immunity.  相似文献   

20.
Nasal administration of Ags using a novel hybrid Ag delivery vehicle composed of envelope glycoproteins of Sendai virus on the surface of liposome membranes (fusogenic liposome) efficiently delivered Ags to Ag-sampling M cells in nasopharyngeal-associated lymphoreticular tissue. Additionally, fusogenic liposomes also effectively delivered the Ags into epithelial cells and macrophages in nasopharyngeal-associated lymphoreticular tissue and nasal passages. In vitro Ag presentation assays clearly showed that fusogenic liposomes effectively presented encapsulated Ags via the MHC class II-dependent pathway of epithelial cells as well as macrophages. Fusogenic liposomes also have an adjuvant activity against mucosal epithelial cells to enhance MHC class II expression. According to these high delivery and adjuvant activities of fusogenic liposomes, nasal immunization with OVA-encapsulated fusogenic liposomes induced high levels of OVA-specific CD4(+) Th1 and Th2 cell responses. Furthermore, Ag-specific CTL responses and Ab productions were also elicited at both mucosal and systemic sites by nasal immunization with Ag-encapsulated fusogenic liposomes. These results indicate that fusogenic liposome is a versatile and effective system for the stimulation of Ag-specific immune responses at both mucosal and systemic compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号