首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For years evolutionary biologists have been interested in searching for the genetic bases underlying humanness. Recent efforts at a large or a complete genomic scale have been conducted to search for positively selected genes in human and in chimp. However, recently developed methods allowing for a more sensitive and controlled approach in the detection of positive selection can be employed. Here, using 13,198 genes, we have deduced the sets of genes involved in rate acceleration, positive selection, and relaxation of selective constraints in human, in chimp, and in their ancestral lineage since the divergence from murids. Significant deviations from the strict molecular clock were observed in 469 human and in 651 chimp genes. The more stringent branch-site test of positive selection detected 108 human and 577 chimp positively selected genes. An important proportion of the positively selected genes did not show a significant acceleration in rates, and similarly, many of the accelerated genes did not show significant signals of positive selection. Functional differentiation of genes under rate acceleration, positive selection, and relaxation was not statistically significant between human and chimp with the exception of terms related to G-protein coupled receptors and sensory perception. Both of these were over-represented under relaxation in human in relation to chimp. Comparing differences between derived and ancestral lineages, a more conspicuous change in trends seems to have favored positive selection in the human lineage. Since most of the positively selected genes are different under the same functional categories between these species, we suggest that the individual roles of the alternative positively selected genes may be an important factor underlying biological differences between these species.  相似文献   

2.
The fliL operon of Escherichia coli contains seven genes that are involved in the biosynthesis and functioning of the flagellar organelle. DNA sequences for the first three genes of this operon have been reported previously. A 2.2-kb PstI restriction fragment was shown to complement known mutant alleles of the fliO, fliP, fliQ, and fliR genes, the four remaining genes of the fliL operon. Four open reading frames were identified by DNA sequence analysis and correlated to their corresponding genes by complementation analysis. These genes were found to encode very hydrophobic polypeptides with molecular masses of 11.1, 26.9, 9.6, and 28.5 kDa for FliO, FliP, FliQ, and FliR, respectively. Analysis of recombinant plasmids in a T7 promoter-polymerase expression system enabled us to identify three of the four gene products. On the basis of DNA sequence analysis and in vivo protein expression, it appears that the fliP gene product is synthesized as a precursor protein with an N-terminal signal peptide of 21 amino acids. The FliP protein was homologous to proteins encoded by a DNA sequence upstream of the flaA gene of Rhizobium meliloti, to a gene involved in pathogenicity in Xanthomonas campestris pv. glycines, and to the spa24 gene of the Shigella flexneri. The latter two genes encode proteins that appear to be involved in protein translocation, suggesting that the FliP protein may have a similar function.  相似文献   

3.
A gene library from Deinococcus radiodurans has been constructed in the cosmid pJBFH. A 51.5-kb hybrid cosmid, pUE40, that transduced Escherichia coli HB101 from leucine dependence to independence was selected, and a 6.9-kb fragment which carried the leuB gene from D. radiodurans was subcloned into the EcoRI site of pAT153. The DNA repair genes mtcA, mtcB, uvsC, uvsD and uvsE, which code for two D. radiodurans UV endonucleases were identified by transforming appropriate repair-deficient mutants of D. radiodurans to repair proficiency with DNA derived from the gene library. Hybrid cosmid pUE50 (37.9 kb) containing an insert carrying both the mtcA and mtcB genes was selected and 5.6- and 2.7-kb DNA fragments carrying mtcA and mtcB, respectively, i.e., the genes that code for UV endonuclease alpha, were subcloned into the EcoRI site of pAT153. The three genes uvsC, uvsD and uvsE, that code for UV endonuclease beta, were all present in the 46.0-kb hybrid cosmid pUE60. The uvsE gene in a 12.2-kb fragment was subcloned into the HindIII site of pAT153 and the size of the insert reduced to 6.1 kb by deletion of a 6.7-kb fragment from the hybrid plasmid pUE62. None of the uvs genes introduced into the UV-sensitive E. coli CSR603 (uvrA-) was able to complement its repair defect. The mtcA, uvsC, uvsD and uvsE genes were found in the 52.5-kb hybrid cosmid pUE70. It is concluded that the DNA repair genes mtcA, mtcB, uvsC, uvsD and uvsE are located within an 83.0-kb fragment of the D. radiodurans genome.  相似文献   

4.
5.
Evidence is presented for the assignment of seven fox genes on the basis of the segregation data for chromosomes and enzymes of fox x Chinese hamster somatic cell hybrids. The chromosomal loci of the following enzyme genes were determined: ME1, VFU1; ADK and PP, VFU4; PEPA, VFU5; GSR, VFU7; and MPI and GOT1, VFU15. The localization of these genes now extends the fox genetic map to 22 mapped genes. Based on comparative analysis of mammalian genetic maps, karyotype evolution in Carnivora is discussed.  相似文献   

6.
The specialized transducing phage lambdacI857S7drifd18 was used as a donor in a transductional mapping of four genes in the rif region of the Escherichia coli genome. The gene order was rts-2.9-rplL-0.8-rpoB, where the numbers indicate intermarker distances in kilobases. The possible orientation of these genes with respect to each other and to neighboring genes is discussed.  相似文献   

7.
Kawaguchi M  Yasumasu S  Hiroi J  Naruse K  Suzuki T  Iuchi I 《Gene》2007,392(1-2):77-88
Using gene cloning and in silico cloning, we analyzed the structures of hatching enzyme gene orthologs of vertebrates. Comparison led to a hypothesis that hatching enzyme genes of Japanese eel conserve an ancestral structure of the genes of fishes, amphibians, birds and mammals. However, the exon-intron structure of the genes was different from species to species in Teleostei: Japanese eel hatching enzyme genes were 9-exon-8-intron genes, and zebrafish genes were 5-exon-4-intron genes. In the present study, we further analyzed the gene structures of fishes belonging to Acanthopterygii. In the species of Teleostei we examined, diversification of hatching enzyme gene into two paralogous genes for HCE (high choriolytic enzyme) and LCE (low choriolytic enzyme) was found only in the acanthopterygian fishes such as medaka Oryzias latipes, Fundulus heteroclitus, Takifugu rubripes and Tetraodon nigroviridis. In addition, the HCE gene had no intron, while the LCE gene consisted of 8 exons and 7 introns. Phylogenetic analysis revealed that HCE and LCE genes were paralogous to each other, and diverged during the evolutionary lineage to Acanthopterygii. Analysis of gene synteny and cluster structure showed that the syntenic genes around the HCE and LCE genes were highly conserved between medaka and Teraodon, but such synteny was not found around the zebrafish hatching enzyme genes. We hypothesize that the zebrafish hatching enzyme genes were translocated from chromosome to chromosome, and lost some of their introns during evolution.  相似文献   

8.
Many genes and proteins are required to carry out the processes of innate and adaptive immunity. For many studies, including systems biology, it is necessary to have a clear and comprehensive definition of the immune system, including the genes and proteins that take part in immunological processes. We have identified and cataloged a large portion of the human immunology-related genes, which we call the essential immunome. The 847 identified genes and proteins were annotated, and their chromosomal localizations were compared to the mouse genome. Relation to disease was also taken into account. We identified numerous pseudogenes, many of which are expressed, and found two putative new genes. We also carried out an evolutionary analysis of immune processes based on gene orthologs to gain an overview of the evolutionary past and molecular present of the human immune system. A list of genes and proteins were compiled. A comprehensive characterization of the member genes and proteins, including the corresponding pseudogenes is presented. Immunome genes were found to have three types of emergence in independent studies of their ontologies, domains, and functions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The Zymomonas mobilis gene encoding acid phosphatase, phoC, has been cloned and sequenced. The gene spans 792 base pairs and encodes an Mr 28,988 polypeptide. This protein was identified as the principal acid phosphatase activity in Z. mobilis by using zymograms and was more active with magnesium ions than with zinc ions. Its promoter region was similar to the -35 "pho box" region of the Escherichia coli pho genes as well as the regulatory sequences for Saccharomyces cerevisiae acid phosphatase (PHO5). A comparison of the gene structure of phoC with that of highly expressed Z. mobilis genes revealed that promoters for all genes were similar in degree of conservation of spacing and identity with the proposed Z. mobilis consensus sequence in the -10 region. The phoC gene contained a 5' transcribed terminus which was AT rich, a weak ribosome-binding site, and less biased codon usage than the highly expressed Z. mobilis genes.  相似文献   

10.
The powerful pressures of sexual and natural selection associated with species recognition and reproduction are thought to manifest in a faster rate of evolution in sex-biased genes, an effect that has been documented particularly for male-biased genes expressed in the reproductive tract. However, little is known about the rate of evolution for genes involved in sexually dimorphic behaviors, which often form the neurological basis of intrasexual competition and mate choice. We used microarray data, designed to uncover sex-biased expression patterns in embryonic chicken brain, in conjunction with data on the rate of sequence evolution for >4,000 coding regions aligned between chicken and zebra finch in order to study the role of selection in governing the molecular evolution for sex-biased and unbiased genes. Surprisingly, we found that female-biased genes, defined across a range of cutoff values, show a higher rate of functional evolution than both male-biased and unbiased genes. Autosomal male-biased genes evolve at a similar rate as unbiased genes. Sex-specific genomic properties, such as heterogeneity in genomic distribution and GC content, and codon usage bias for sex-biased classes fail to explain this surprising result, suggesting that selective pressures may be acting differently on the male and female brain.  相似文献   

11.
A comparative study of the last exon of the zinc finger genes Zfx, Zfy, and Zfa from species of mice in the genus Mus was conducted to assess the extent of gene-specific and chromosome-specific effects on the evolutionary patterns among related X-, Y-, and autosomal-linked genes. Phylogenetic analyses of 29 sequences from Zfx, Zfa, and Zfy from 10 taxa were performed to infer relatedness among the zinc finger loci, and codon-based maximum likelihood analyses were conducted to assess evolutionary pattern among genes. Five models of nucleotide sequence evolution were applied and compared using a likelihood ratio test. Estimates of nonsynonymous to synonymous changes (dN/dS) for these genes suggest that amino acid substitutions are occurring at a more rapid rate across the autosomal- and Y-specific lineages compared to the X-specific lineage, with the Y-specific lineage showing the highest rate under certain models. The data suggest the action of gene-specific effects on evolutionary pattern. In particular, Zfa and Zfy genes, both with presumed restricted expression, appear less functionally constrained relative to ubiquitously expressed Zfx. Slightly elevated dN/dS for Zfy genes in comparison to Zfa also suggest Y-specific effects.  相似文献   

12.
13.
14.
15.
Multicellular plants and animals have evolved independently from a unicellular, last common ancestor. Each lineage started with a common toolkit of functioning genes and evolved to complex, multicellular forms. Comparison of the genes used to serve similar functions shows how organisms can use different genes for similar ends and thereby reveals the principles of development.  相似文献   

16.
17.
A search of the recently sequenced Rhizopus oryzae strain 99-880 genome database uncovered 18 putative polygalacturonase genes with two genes being identical and only one with similarity to a previously reported R. oryzae polygalacturonase gene. The 17 different genes share 50% to greater than 90% identity at the nucleotide level as well as the deduced protein sequence level. The cDNA of the different genes was isolated directly or recombinantly and used to express the encoded proteins in Pichia pastoris. Recombinant protein expression demonstrated that 15 of the 17 genes encode active enzymes with twelve genes encoding for endo-polygalacturonase enzymes and three genes encoding for exo-polygalacturonase enzymes. Phylogenetic analysis indicates that the genes form a distinct monophyletic group among fungal polygalacturonase enzymes. Finally, our results also suggest that the ancestral form of polygalacturonase in fungi is endolytic and exolytic function evolved later, at least two independent times.  相似文献   

18.
The diversity of the membrane-bound nitrate reductase (narG) and nitrous oxide reductase (nosZ) genes in fluorescent pseudomonads isolated from soil and rhizosphere environments was characterized together with that of the 16S rRNA gene by a PCR-restriction fragment length polymorphism assay. Fragments of 1,008 bp and 1,433 bp were amplified via PCR with primers specific for the narG and nosZ genes, respectively. The presence of the narG and nosZ genes in the bacterial strains was confirmed by hybridization of the genomic DNA and the PCR products with the corresponding probes. The ability of the strains to either reduce nitrate or totally dissimilate nitrogen was assessed. Overall, there was a good correspondence between the reductase activities and the presence of the corresponding genes. Distribution in the different ribotypes of strains harboring both the narG and nosZ genes and of strains missing both genes suggests that these two groups of strains had different evolutionary histories. Both dissimilatory genes showed high polymorphism, with similarity indexes (Jaccard) of between 0.04 and 0.8, whereas those of the 16S rRNA gene only varied from 0.77 to 0.99. No correlation between the similarity indexes of 16S rRNA and dissimilatory genes was seen, suggesting that the evolution rates of ribosomal and functional genes differ. Pairwise comparison of similarity indexes of the narG and nosZ genes led to the delineation of two types of strains. Within the first type, the similarity indexes of both genes varied in the same range, suggesting that these two genes have followed a similar evolution. Within the second type of strain, the range of variations was higher for the nosZ than for the narG gene, suggesting that these genes have had a different evolutionary rate.  相似文献   

19.
Analysis of the sequence of a 4.1-kb rfa region downstream from rfaP revealed four genes. The first of these encodes a basic protein of 36,730 Da and does not correspond to any known rfa gene. It has been designated rfaS. The second gene was identified as rfaB on the basis of its ability to complement a Salmonella typhimurium rfaB mutant and encodes a 42,060-Da protein. The third and fourth genes encode proteins of 39,423 and 36,046 Da which are strongly homologous to the RfaI and RfaJ proteins of S. typhimurium. Escherichia coli K-12 restriction fragments carrying these genes complement an S. typhimurium rfaI mutant and, at lower efficiency, an rfaJ mutant. The difference in complementation efficiency suggests that the rfaI and rfaJ genes of E. coli K-12 have sugar and acceptor specificities different from those of S. typhimurium, as predicted from the different lipopolysaccharide (LPS) core structures of the two organisms. Defined mutations affecting all four genes were constructed in vitro and crossed onto the chromosome. The phenotypes of these mutations suggest that extension of the core may require protein-protein interactions between the enzymes involved in core completion as well as the interaction of these enzymes with their specific acceptor molecules. Mutants blocked at rfaI or genes encoding earlier steps in core biosynthesis exhibited a single predominant LPS band on gels while mutants blocked at rfaJ or genes encoding later steps produced multiple strong bands, indicating that one of the processes generating core heterogeneity requires a functional rfaI gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号