首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intense efforts are currently devoted to elucidate the metabolic networks of plants, in which nitrogen assimilation is of particular importance because it is strongly related to plant growth. In addition, at the leaf level, primary nitrogen metabolism interacts with photosynthesis, day respiration, and photorespiration, simply because nitrogen assimilation needs energy, reductant, and carbon skeletons which are provided by these processes. While some recent studies have focused on metabolomics and genomics of plant leaves, the actual metabolic fluxes associated with nitrogen metabolism operating in leaves are not very well known. In the present paper, it is emphasized that (12)C/(13)C and (14)N/(15)N stable isotopes have proved to be useful tools to investigate such metabolic fluxes and isotopic data are reviewed in the light of some recent advances in this area. Although the potential of stable isotopes remains high, it is somewhat limited by our knowledge of some isotope effects associated with enzymatic reactions. Therefore, this paper should be viewed as a call for more fundamental studies on isotope effects by plant enzymes.  相似文献   

2.
The magnitude of possible carbon isotopic fractionation during dark respiration was investigated with isolated mesophyll cells from mature leaves of common bean (Phaseolus vulgaris L.), a C3 plant, and corn (Zea mays L.), a C4 plant. Mesophyll protoplasts were extracted from greenhouse-grown leaves and incubated in culture solutions containing different carbohydrate substrates (fructose, glucose, and sucrose) with known [delta]13C values. The CO2 produced by protoplasts after incubation in the dark was collected, purified, and analyzed for its carbon isotope ratio. From observations of the isotope ratios of the substrate and respired CO2, we calculated the carbon isotope discrimination associated with metabolism of each of these substrates. In eight of the 10 treatment combinations, the carbon isotope ratio discrimination was not significantly different from 0. In the remaining two treatment combinations, the carbon isotope ratio discrimination was 1[per mille (thousand) sign]. From these results, we conclude that there is no significant carbon isotopic discrimination during mitochondrial dark respiration when fructase, glucose, or sucrose are used as respiratory substrates.  相似文献   

3.
Variations in the natural abundance of 18O and 2H in plant cellulose are influenced by the isotopic composition of the water directly involved in metabolism—the metabolic water fraction. The isotopic distinction between the metabolic source water and total tissue water must reflect the formation of isotopic gradients within the tissue that are influenced by the rate of water turnover, by properties of the water conducting system and by environmental conditions. It seems that the 18O abundance in the metabolic water is conserved in cellulose with a relatively constant isotope effect. The relationship of the 2H abundance between metabolic water and cellulose is more complex. Hydrogen incorporated into photosynthetic products during primary reduction steps is highly depleted in 2H. However, a large proportion of these hydrogens are subsequently replaced by exchange with water, leading to 2H enrichment during heterotrophic metabolism. Deciphering the oxygen isotope ratio of cellulose could help in providing insights into the carbon and oxygen fluxes exchanged between plants and the atmosphere. This is because the 18O abundance in cellulose records the 18O abundance in the metabolic water, which in turn, controls the oxygen isotopic signatures of the CO2 and O2 released by plants into the atmosphere. The hydrogen isotope effects associated with carbohydrate metabolism provide insights into the autotrophic state of a plant tissue. This is because the hydrogen isotope ratio of carbohydrates must reflect the net effects of the two opposing isotope effects associated with photosynthesis and heterotrophic metabolism.  相似文献   

4.
The origin of the carbon atoms in the CO(2) respired by French bean (Phaseolus vulgaris) leaves in the dark has been studied using (13)C/(12)C isotopes as tracers. The stable isotope labeling was achieved through a technical device that uses an open gas-exchange system coupled online to an elemental analyzer and linked to an isotope ratio mass spectrometer. The isotopic analysis of the CO(2) respired in the dark after a light period revealed that the CO(2) was labeled, but the labeling level decreased progressively as the dark period increased. The pattern of disappearance depended on the amount of carbon fixed during the labeling and indicated that there were several pools of respiratory metabolites with distinct turnover rates. We demonstrate that the carbon recently assimilated during photosynthesis accounts for less than 50% of the carbon in the CO(2) lost by dark respiration and that the proportion is not influenced by leaf starvation in darkness before the labeling. Therefore, most of the carbon released by dark respiration after illumination does not come from new photosynthates.  相似文献   

5.
Rigorous mathematical modeling of carbon-labeling experiments allows estimation of fluxes through the pathways of central carbon metabolism, yielding powerful information for basic scientific studies as well as for a wide range of applications. However, the mathematical models that have been developed for flux determination from 13C labeling data have commonly neglected the influence of kinetic isotope effects on the distribution of 13C label in intracellular metabolites, as these effects have often been assumed to be inconsequential. We have used measurements of the 13C isotope effects on the pyruvate dehydrogenase enzyme from the literature to model isotopic fractionation at the pyruvate node and quantify the modeling errors expected to result from the assumption that isotope effects are negligible. We show that under some conditions kinetic isotope effects have a significant impact on the 13C labeling patterns of intracellular metabolites, and the errors associated with neglecting isotope effects in 13C-metabolic flux analysis models can be comparable in size to measurement errors associated with GC–MS. Thus, kinetic isotope effects must be considered in any rigorous assessment of errors in 13C labeling data, goodness-of-fit between model and data, confidence intervals of estimated metabolic fluxes, and statistical significance of differences between estimated metabolic flux distributions.  相似文献   

6.
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

7.
张蕊  赵钰  何红波  张旭东 《生态学杂志》2017,28(7):2379-2388
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

8.
Carbon isotope fractionation in metabolic processes following carboxylation of ribulose-1,5-bisphosphate (RuBP) is not as well described as the discrimination during photosynthetic CO(2) fixation. However, post-carboxylation fractionation can influence the diel variation of delta(13)C of leaf-exported organic matter and can cause inter-organ differences in delta(13)C. To obtain a more mechanistic understanding of post-carboxylation modification of the isotopic signal as governed by physiological and environmental controls, we combined the modelling approach of Tcherkez et al., which describes the isotopic fractionation in primary metabolism with the experimental determination of delta(13)C in leaf and phloem sap and root carbon pools during a full diel course. There was a strong diel variation of leaf water-soluble organic matter and phloem sap sugars with relatively (13)C depleted carbon produced and exported during the day and enriched carbon during the night. The isotopic modelling approach reproduces the experimentally determined day-night differences in delta(13)C of leaf-exported carbon in Ricinus communis. These findings support the idea that patterns of transitory starch accumulation and remobilization govern the diel rhythm of delta(13)C in organic matter exported by leaves. Integrated over the whole 24 h day, leaf-exported carbon was enriched in (13)C as compared with the primary assimilates. This may contribute to the well-known--yet poorly explained--relative (13)C depletion of autotrophic organs compared with other plant parts. We thus emphasize the need to consider post-carboxylation fractionations for studies that use delta(13)C for assessing environmental effects like water availability on ratio of mole fractions of CO(2) inside and outside the leaf (e.g. tree ring studies), or for partitioning of CO(2) fluxes at the ecosystem level.  相似文献   

9.
The isotope ratios of carbon, hydrogen, and oxygen of rectified alcohols were determined to distinguish their botanical and geographical origins by continuous flow-isotope ratio mass spectrometry (CF-IRMS). The (13)C/(12)C and (18)O/(16)O ratios of 27 fermented alcohols with known origins showed clusters derived from each botanical origin, viz. corn, sugarcane, wheat, and tapioca. C3 and C4 plants were easily distinguishable by the (13)C/(12)C ratio. Sugarcane and corn are both C4 plants, and they showed small differences in isotope ratios. The combination plots of the D/H and (18)O/(16)O ratios enabled us to designate the geographical origins of alcohol derived from the same kind of crop, such as Chinese or American corn. The chemically synthetic and fermented alcohols were clearly distinguished by D/H and (18)O/(16)O ratios. Isotope ratios were useful for origin identification of alcohol. We plan to construct a database of alcohol isotope ratios to determine the origins of raw materials in alcohol.  相似文献   

10.
During the process of terpene biosynthesis, C–C bond breaking and forming steps are subjected to kinetic carbon isotope effects, leading to distinct carbon isotopic signatures of the products. Accordingly, carbon isotopic signatures could be used to reveal the ‘biosynthetic history’ of the produced terpenoids. Five known sesquiterpene cyclases, regulating three different pathways, representing simple to complex biosynthetic sequences, were heterologously expressed and used for in vitro assays with farnesyl diphosphate as substrate. Compound specific isotope ratio mass spectrometry measurements of the enzyme substrate farnesyl diphosphate (FDP) and the products of all the five cyclases were performed. The calculated δ13C value for FDP, based on δ13C values and relative amounts of the products, was identical with its measured δ13C value, confirming the reliability of the approach and the precision of measurements. The different carbon isotope ratios of the products reflect the complexity of their structure and are correlated with the frequency of carbon–carbon bond forming and breaking steps on their individual biosynthetic pathways. Thus, the analysis of carbon isotopic signatures of terpenes at natural abundance can be used as a powerful tool in elucidation of associated biosynthetic mechanisms of terpene synthases and in future in vivo studies even without ‘touching’ the plant.  相似文献   

11.
Plant cuticular n-alkanes have been successfully used as markers to estimate diet composition and intake of grazing herbivores. However, additional markers may be required under grazing conditions in botanically diverse vegetation. This study was conducted to describe the n-alkane profiles and the carbon isotope enrichment of n-alkanes of common plant species from the Mid Rift Valley rangelands of Ethiopia, and evaluate their potential use as nutritional markers. A total of 23 plant species were collected and analysed for long-chain n-alkanes ranging from heptacosane to hexatriacontane (C(27) to C(36)), as well as their carbon isotopic ratio ((13)C/(12)C). The analysis was conducted by gas chromatography/combustion isotope ratio mass spectrometry following saponification, extraction and purification. The isotopic composition of the n-alkanes is reported in the delta notation (δ(13)C) relative to the Vienna Pee Dee Belemnite standard. The dominant n-alkanes in the species were C(31) (mean ± s.d., 283 ± 246 mg/kg dry matter) and C(33) (149 ± 98 mg/kg dry matter). The carbon isotopic enrichment of the n-alkanes ranged from -19.37‰ to -37.40‰. Principal component analysis was used to examine interspecies differences based on n-alkane profiles and the carbon isotopic enrichments of individual n-alkanes. Large variability among the pasture species was observed. The first three principal components explained most of the interspecies variances. Comparison of the principal component scores using orthogonal procrustes rotation indicated that about 0.84 of the interspecies variances explained by the two types of data sets were independent of each other, suggesting that the use of a combination of the two markers can improve diet composition estimations. It was concluded that, while the n-alkane profile of the pasture species remains a useful marker for use in the study region, the δ(13)C values of n-alkanes can provide additional information in discriminating diet components of grazing animals.  相似文献   

12.
A A Ivlev 《Biofizika》1991,36(6):1069-1078
Recent studies on fractionation of carbon isotopes in biological systems are reviewed. It follows that direct experimental proofs have been obtained that 1) basic fractionation of carbon isotopes in the cell is related to isotope effect in pyruvate decarboxylation; 2) fractionation of carbon isotopes in the above reaction in vivo proceeds with exhausting substrate pool. The latter provides natural relationship between metabolites isotope distribution and sequence of their synthesis in the cell cycle, or with the temporal organization of cellular metabolism. The non-steady and periodic pattern of pyruvate decarboxylation due to the exhausting substrate pool well agrees with the existing notions on reciprocal oscillations in the cell glycolytic chain. Experimental data are presented corroborating indirectly the existence of oscillations in bacterial cells. Earlier proposed model of the mechanism of carbon isotope fractionation based on the above principles can be used for analysing changes in isotopic characteristics of the organisms and interpreting their relations with metabolic processes.  相似文献   

13.
It is a nutritional challenge for nectar-feeding insects to meet the amino acid requirements of oviposition. Here we investigate whether egg amino acids derive from larval diet or are synthesized from nectar sugar in four species of butterfly: Colias eurytheme, Speyeria mormonia, Euphydryas chalcedona, and Heliconius charitonia. These species exhibit a range of life history and differ in degree of shared phylogeny. We use 13C differences among plants to identify dietary sources of amino acid carbon, and we measure amino acid 13C using compound-specific stable isotope analysis. Egg essential amino acids derived solely from the larval diet, with no evidence for metabolic carbon remodeling. Carbon in nonessential amino acids from eggs derived primarily from nectar sugars, with consistent variation in amino acid turnover. There was no relationship between the nonessential amino acids of eggs and host plants, demonstrating extensive metabolic remodeling. Differences between species in carbon turnover were reflected at the molecular level, particularly by glutamate and aspartate. Essential amino acid 13C varied in a highly consistent pattern among larval host plants, reflecting a common isotopic "fingerprint" associated with plant biosynthesis. These data demonstrate conservative patterns of amino acid metabolism among Lepidoptera and the power of molecular stable isotope analyses for evaluating nutrient metabolism in situ.  相似文献   

14.
The stable carbon isotope ratio of fossil tooth enamel carbonate is determined by the photosynthetic systems of plants at the base of the animal's foodweb. In subtropical Africa, grasses and many sedges have C(4)photosynthesis and transmit their characteristically enriched 13C/(12)C ratios (more positive delta13C values) along the foodchain to consumers. We report here a carbon isotope study of ten specimens of Australopithecus africanus from Member 4, Sterkfontein (ca. 2.5 to 2.0Ma), compared with other fossil mammals from the same deposit. This is the most extensive isotopic study of an early hominin species that has been achieved so far. The results show that this hominin was intensively engaged with the savanna foodweb and that the dietary variation between individuals was more pronounced than for any other early hominin or non-human primate species on record. Suggestions that more than one species have been incuded in this taxon are not supported by the isotopic evidence. We conclude that Australopithecus africanus was highly opportunistic and adaptable in its feeding habits.  相似文献   

15.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope composition of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (delta 13C = -44.6 +/- 0.2@1000) were characterized by the isotope effects delta 13CCO2 = -50.2 +/- 0.4@1000, delta 13Cbiom = -46.6 +/- 0.4@1000 and delta 13Cexo = -41.5 +/- 0.4@1000, respectively. The isotope composition of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (delta 13C = -21 +/- 0.4@1000) were characterized by the isotope effects delta 13CCO2 = -24.1 +/- 0.4@1000, delta 13Cbiom = -19.2 +/- 0.4@1000 and delta 13Cexo = -19.1 +/- 0.4@1000, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the enviroment is discussed.  相似文献   

16.
Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis‐based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C‐sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural 13C‐abundance (δ13C) in oil palm tissues, including fruits at different maturation stages. We find a 13C‐enrichment in heterotrophic organs compared to mature leaves, with roots being the most 13C‐enriched. The δ13C in fruits decreased during maturation, reflecting the accumulation in 13C‐depleted lipids. We further used observed δ13C values to compute plausible carbon fluxes using a steady‐state model of 13C‐distribution including metabolic isotope effects (12v/13v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C‐exchange between organs.  相似文献   

17.
Recent developments in (13) C NMR spectrometry have allowed the determination of intramolecular (13) C/(12) C ratios with high precision. However, the analysis of carbohydrates requires their derivatization to constrain the anomeric carbon. Fructose has proved to be particularly problematic because of a byproduct occurring during derivatization and the complexity of the NMR spectrum of the derivative. Here, we describe a method to determine the intramolecular (13) C/(12) C ratios in fructose by (13) C NMR analysis of the acetyl-isopropylidene derivative. We have applied this method to measure the intramolecular (13) C/(12) C distribution in the fructosyl moiety of sucrose and have compared this with that in the glucosyl moiety. Three prominent features stand out. First, in sucrose from both C(3) and C(4) plants, the C-1 and C-2 positions of the glucosyl and fructosyl moieties are markedly different. Second, these positions in C(3) and C(4) plants show a similar profile. Third, the glucosyl and fructosyl moieties of sucrose from Crassulacean acid metabolism (CAM) metabolism have a different profile. These contrasting values can be interpreted as a result of the isotopic selectivity of enzymes that break or make covalent bonds in glucose metabolism, whereas the distinctive (13) C pattern in CAM sucrose probably indicates a substantial contribution of gluconeogenesis to glucose synthesis.  相似文献   

18.
Gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure the (13)C/(12)C ratios of PLFAs at natural abundance levels from a temperate grassland nitrogen (N) and phosphorus (P) factorial fertilization experiment in northern Greece. In each plot two rhizosphere samples were derived centred around individual Agrostis capillaris and Prunella vulgaris plants. It was hypothesized that the isotopic signal of microbes that preferentially feed on recalcitrant litter such as fungi would be modified by fertilization more strongly than that of opportunistic microbes using labile C. Microbial community δ(13)C was affected by both P and N fertilization regime and plant species identity. However, we have been unable to detect significant nutrient effects on individual groups of microbes when analyzed separately in contrast to our original hypothesis. Intra-treatment variability, as evaluated from Hartley's F(max) tests in the five first PCA components axes as well as the size of the convex hulls in PCA scoreplots and Mahalanobis distances, was considerably higher in the non-fertilized controls. Moreover, a significant relationship was established between the change in PLFA abundances and their respective changes in δ(13)C for the aggregate of samples and those simultaneously fertilized with N and P. We conclude that use of compound specific isotope analysis in the absence of labelling represents a valuable and overlooked tool in obtaining an insight of microbial community functioning.  相似文献   

19.
Compound-specific hydrogen and carbon isotopic compositions in n-alkanoic acids, phytol and sterols were determined for various plant classes (terrestrial C3-angiosperm; C3-gymnosperm; C4; crassulacean acid metabolism (CAM); and aquatic C3 plants) in order to investigate isotopic fractionations among various plant classes. In all plants, lipid biomolecules are depleted in both D (up to 324 per thousand ) and 13C (up to 14.7 per thousand ) relative to ambient water and bulk tissue, respectively. In addition, the magnitude of D- and 13C-depletion of lipid biomolecules is distinctive depending on plant classes. For example, C3 angiosperm n-alkanoic acids are less depleted in D (95+/-23 per thousand ) and 13C (4.3 +/- 2.5 per thousand ) relative to ambient water and bulk tissue, respectively, while C4 plant n-alkanoic acids are more depleted in D (119 +/- 15 per thousand ) and 13C (10.2 +/- 2.0 per thousand ). On the other hand, C3 angiosperm phytol and sterols are much more depleted in D (306 +/-12 per thousand for phytol, 211+/-15 per thousand for sterol) with less depletion in 13C (4.1 +/- 1.1 per thousand for phytol, 1.3 +/- 0.9 per thousand for sterol) relative to ambient water and bulk tissue, respectively, while C4 plant phytol and sterols are less depleted in D (254 +/- 7 per thousand for phytol, 186 +/- 13 per thousand for sterols) with much more depletion in 13C (9.0 +/- 1.2 per thousand for phytol, 5.0 +/- 1.1 per thousand for sterols). Among various plant classes, there is a positive correlation between the D- and 13C-depletion for n-alkanoic acids, while a negative correlation was found for phytol and sterols from the same plants.  相似文献   

20.
Monitoring photosynthetic isotope exchange is an important tool for predicting the influence of plant communities on the global carbon cycle in response to climate change. C(4) grasses play an important role in the global carbon cycle, but their contribution to the isotopic composition of atmospheric CO(2) is not well understood. Instantaneous measurements of (13)CO(2) (Delta(13)C) and C(18)OO (Delta(18)O) isotope exchange in five NAD-ME and seven NADP-ME C(4) grasses have been conducted to investigate the difference in photosynthetic CO(2) isotopic fractionation in these subgroups. As previously reported, the isotope composition of the leaf material (delta(13)C) was depleted in (13)C in the NAD-ME compared with the NADP-ME grasses. However, Delta(13)C was not different between subtypes at high light, and, although Delta(13)C increased at low light, it did so similarly in both subtypes. This suggests that differences in leaf delta(13)C between the C(4) subtypes are not caused by photosynthetic isotope fractionation and leaf delta(13)C is not a good indicator of bundle sheath leakiness. Additionally, low carbonic anhydrase (CA) in C(4) grasses may influences Delta(13)C and should be considered when estimating the contribution of C(4) grasses to the global isotopic signature of atmospheric CO(2). It was found that measured Delta(18)O values were lower than those predicted from leaf CA activities and Delta(18)O was similar in all species measured. The Delta(18)O in these C(4) grasses is similar to low Delta(18)O previously measured in C(4) dicots which contain 2.5 times the leaf CA activity, suggesting that leaf CA activity is not a predictor of Delta(18)O in C(4) plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号