首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent amplified fragment length polymorphism revealed that strains of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans are genetically distinct and can be grouped into four genetic lineages. Four suppression subtractive hybridizations were then performed to isolate DNA fragments present in these bean pathogens and absent from closely related xanthomonads. Virulence gene candidates were identified such as homologs of hemagglutinins, TonB-dependent receptors, zinc-dependent metalloproteases, type III effectors, and type IV secretion system components. Unexpectedly, homologs of the type III secretion apparatus components (SPI-1 family), usually reported in animal pathogens and insect symbionts, were also detected.  相似文献   

2.
ISXax1 is a novel insertion sequence belonging to the IS256 and Mutator families. Dot blot, Southern blot, and PCR analyses revealed that ISXax1 is restricted to Xanthomonas axonopodis pv. phaseoli (variants fuscans and non-fuscans) and X. axonopodis pv. vesicatoria strains. Directed AFLP also showed that a high degree of polymorphism is associated with ISXax1 insertion in these strains.  相似文献   

3.
A PCR-based method was developed for the specific detection of Xanthomonas campestris pv. phaseoli var. fuscans from plant material. Primers Xf1 and Xf2, based on a sequence conserved amplified region (SCAR) derived from RAPD PCR analysis of X. c. pv. phaseoli var. fuscans , amplified a DNA fragment of 450 bp from all such isolates. In contrast, no amplification product was obtained from any X. c. pv. phaseoli isolates, or from any other DNAs tested. As few as 10 cells of X. c . pv. phaseoli var. fuscans (equivalent to about 100 fg DNA) could be detected in vitro . In planta , following an initial inoculation of as little as one cell, an amplification product was generated after only 2 d of incubation, allowing highly sensitive detection 10 d before disease symptoms were observed. Moreover, the failure to amplify DNA from X. c . pv. phaseoli isolates shows that these primers provide a rapid, improved method to differentiate these two varieties using PCR.  相似文献   

4.
The occurrence of "Xanthomonas axonopodis pv. phaseoli var. fuscans" (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 10(5) CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.  相似文献   

5.
O-polysaccharides of phytopathogenic bacteria Xanthomonas campestris were isolated by mild acid degradation of the lipopolysaccharides and studied by sugar and methylation analysis, along with 1H and 13C NMR spectroscopy. The following structures of the repeating units of the polysaccharides of X. campestris pv. phaseoli var. fuscans GSPB 271 (1). and X. campestris pv. malvacearum GSPB 1386 and GSPB 2388 (2). were established:The O-polysaccharides of X. campestris are structurally similar to those of some Pseudomonas syringae strains.  相似文献   

6.
ISXax1 is a novel insertion sequence belonging to the IS256 and Mutator families. Dot blot, Southern blot, and PCR analyses revealed that ISXax1 is restricted to Xanthomonas axonopodis pv. phaseoli (variants fuscans and non-fuscans) and X. axonopodis pv. vesicatoria strains. Directed AFLP also showed that a high degree of polymorphism is associated with ISXax1 insertion in these strains.  相似文献   

7.
Twenty Xanthomonas campestris pathotype strains, three non-pathotype strains, and one strain of X. fragariae were studied by S1 DNA:DNA hybridization tests. The results of these tests do not support the retention of X. campestris as a single species. DNA reassociation values among many of the strains were low. Three clusters of closely related strains were observed, but nine strains did not cluster. Xanthomonas campestris pv. secalis was more closely related to X. fragariae than to any other X. campestris pathovar. Mapping the host family upon a three-dimensional genomic distance matrix of the xanthomonads suggested that strains attacking the same plant family usually show some relationship, but only a distant one. Thus, pathogenicity toward members of the same host family is not a measure of the genomic relationships of xanthomonads.  相似文献   

8.
The production of monoclonal antibodies (MAbs) to ethylenediamine tetraacetic acid (sodium salt) soluble antigens of Pseudomonas syringae pv. phaseolicola and Xanthomonas campestris pv. phaseoli (fuscans strain) is described. MAbs A6-1 and A6-2 produced to Ps. syringae pv. phaseolicola are pathovar specific. Although MAb XP2 produced to X. campestris pv. phaseoli recognized surface antigens of all strains of this pathovar (including fuscans strains) it cross-reacted specifically with X. campestris pv. malvacearum; it did not react with any other known bacteria or unidentified epiphytes from navy bean seed or leaves. The isotype of both MAbs XP2 and A6-1 is IgG3 whereas that of MAb A6-2 is IgG2a. The reactive antigens are thermostable, but their chemical nature has not been determined.  相似文献   

9.
Understanding the survival, multiplication, and transmission to seeds of plant pathogenic bacteria is central to study their pathogenesis. We hypothesized that the type III secretion system (T3SS), encoded by hrp genes, could have a role in host colonization by plant pathogenic bacteria. The seed-borne pathogen Xanthomonas fuscans subsp. fuscans causes common bacterial blight of bean (Phaseolus vulgaris). Directed mutagenesis in strain CFBP4834-R of X. fuscans subsp. fuscans and bacterial population density monitoring on bean leaves showed that strains with mutations in the hrp regulatory genes, hrpG and hrpX, were impaired in their phyllospheric growth, as in the null interaction with Escherichia coli C600 and bean. In the compatible interaction, CFBP4834-R reached high phyllospheric population densities and was transmitted to seeds at high frequencies with high densities. Strains with mutations in structural hrp genes maintained the same constant epiphytic population densities (1 x 10(5) CFU g(-1) of fresh weight) as in the incompatible interaction with Xanthomonas campestris pv. campestris ATCC 33913 and the bean. Low frequencies of transmission to seeds and low bacterial concentrations were recorded for CFBP4834-R hrp mutants and for ATCC 33913, whereas E. coli C600 was not transmitted. Moreover, unlike the wild-type strain, strains with mutations in hrp genes were not transmitted to seeds by vascular pathway. Transmission to seeds by floral structures remained possible for both. This study revealed the involvement of the X. fuscans subsp. fuscans T3SS in phyllospheric multiplication and systemic colonization of bean, leading to transmission to seeds. Our findings suggest a major contribution of hrp regulatory genes in host colonization processes.  相似文献   

10.
Two DNA fragments from Xanthomonas albilineans were used as probes to study the molecular diversity among strains of this pathogen. Two serologically distinct groups, serovars I and II, could be differentiated by hybridization to the probes. These probes, designated 830 and 838, were cloned after subtractive DNA hybridization of common sequences of Xanthomonas campestris pv. vasculorum from a serovar I strain of X. albilineans. They did not hybridize to the DNA of several other xanthomonads or to sugarcane DNA under the conditions of hybridization used. Faint bands were observed upon hybridization of probe 830 with one strain of X. campestris pv. phaseoli. The same banding patterns were obtained with a strain of X. albilineans from Burkina Faso and the serovar II strains of Mauritius. The serovar I strains from Mauritius and two other strains each from Reunion and South Africa had similar pattern.  相似文献   

11.
The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease.  相似文献   

12.
The occurrence of “Xanthomonas axonopodis pv. phaseoli var. fuscans” (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 105 CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.  相似文献   

13.
14.
Kim JG  Park BK  Yoo CH  Jeon E  Oh J  Hwang I 《Journal of bacteriology》2003,185(10):3155-3166
We sequenced an approximately 29-kb region from Xanthomonas axonopodis pv. glycines that contained the Hrp type III secretion system, and we characterized the genes in this region by Tn3-gus mutagenesis and gene expression analyses. From the region, hrp (hypersensitive response and pathogenicity) and hrc (hrp and conserved) genes, which encode type III secretion systems, and hpa (hrp-associated) genes were identified. The characteristics of the region, such as the presence of many virulence genes, low G+C content, and bordering tRNA genes, satisfied the criteria for a pathogenicity island (PAI) in a bacterium. The PAI was composed of nine hrp, nine hrc, and eight hpa genes with seven plant-inducible promoter boxes. The hrp and hrc mutants failed to elicit hypersensitive responses in pepper plants but induced hypersensitive responses in all tomato plants tested. The Hrp PAI of X. axonopodis pv. glycines resembled the Hrp PAIs of other Xanthomonas species, and the Hrp PAI core region was highly conserved. However, in contrast to the PAI of Pseudomonas syringae, the regions upstream and downstream from the Hrp PAI core region showed variability in the xanthomonads. In addition, we demonstrate that HpaG, which is located in the Hrp PAI region of X. axonopodis pv. glycines, is a response elicitor. Purified HpaG elicited hypersensitive responses at a concentration of 1.0 micro M in pepper, tobacco, and Arabidopsis thaliana ecotype Cvi-0 by acting as a type III secreted effector protein. However, HpaG failed to elicit hypersensitive responses in tomato, Chinese cabbage, and A. thaliana ecotypes Col-0 and Ler. This is the first report to show that the harpin-like effector protein of Xanthomonas species exhibits elicitor activity.  相似文献   

15.
Common bacterial blight (CBB) is caused by four genetic lineages belonging to two species of Xanthomonas, namely Xanthomonas citri pv. fuscans (includes fuscans, NF2 and NF3 lineages) and X. phaseoli pv. phaseoli (lineage NF1). A collection of 117 strains of Xanthomonas isolated from common bean plants grown in several producing regions of Brazil, between 2007 and 2016 was established. For species and lineage identification, the following tests were performed: multiplex PCR with a set of four specific primer pairs, pathogenicity tests on susceptible cultivar BRS Artico and phylogenetic analysis based on housekeeping gene sequences. The presence of the two species were confirmed among the 117 strains, being 62 non-fuscans strains (NF1, NF2 and NF3) and 55 fuscans strains of X. citri pv. fuscans. To select a set of representative strains for the virulence assay, a PCR-based analysis of effector diversity was performed with 42 strains belonging to the two species. PCR with primers for xopL, avrBsT, xopE2 and xopE1 genes were positive for all strains, while for the other six effectors there was variation. Six distinct effector profiles were detected, and one strain representing each type was inoculated in 15 common bean cultivars with varying levels of resistance to CBB. The fuscans strains showed uniformity in their effector profiles and were the most virulent. The phylogenetic analyses of our strain collection revealed that all genetic variants of CBB pathogens (NF1, NF2, NF3 and fuscans) are present in Brazil, with significant variability in virulence to common bean cultivars.  相似文献   

16.
A sensitive and specific assay was developed to detect citrus bacterial canker caused by Xanthomonas axonopodis pv. citri, in leaves and fruits of citrus. Primers XACF and XACR from hrpW homologous to pectate lyase, modifying the structure of pectin in plants, were used to amplify a 561 bp DNA fragment. PCR technique was applied to detect the pathogen in naturally or artificially infected leaves of citrus. The PCR product was only produced from X. axonopodis pv. citri among 26 isolates of Xanthomonas strains, Escherichia coli (O157:H7), Pectobacterium carotovorum subsp. carotovorum, and other reference microbes.  相似文献   

17.
Efficient control of Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot on stone fruit, requires a sensitive and reliable diagnostic tool. A PCR detection method that utilizes primers to target the hrp gene cluster region was developed in this study. The nucleotide sequence of the PCR product amplified with primers specific for the hrp region of the xanthomonads and genomic DNA of X. arboricola pv. pruni was determined, and the sequence was aligned with that of X. campestris pv. campestris, which was obtained from the GenBank database. On the basis of the sequence of the amplified hrp region, a PCR primer set of XapF/R specific to X. arboricola pv. pruni was designed. This primer set yielded a 243-bp product from the genomic DNA of X. aboricola pv. pruni strains, but no products from other 21 strains of Xanthomonas or from two epiphytic bacterial species. Southern blot hybridization with the probe derived from the PCR product with the primer set and X. aboricola pv. pruni DNA confirmed the PCR results. The Xap primer system was successfully applied to detect the pathogen from infected peach fruits. When it was applied in field samples, the primer set was proved as a reliable diagnostic tool for specific detection of X. aboricola pv. pruni from peach orchards.  相似文献   

18.
The relationship of 17 Xanthomonas campestris pathotype strains, three additional X. campestris strains, and the type strain of Xanthomonas albilineans were examined by DNA-DNA hybridization tests. The results coupled with those of a previous study (Hildebrand et al. 1990) support the hypothesis that X. campestris does not constitute a single bacterial species. There were low levels of DNA-DNA reassociation among many of the different pathovars examined. Six clusters of related pathovars were discerned. In addition, four of the pathovars were only distantly related to each other and to the six clusters. Xanthomonas albilineans was not closely related to any of the other xanthomonads tested.
Mapping and superimposing the botanical families of the host plants upon a three-dimensional genomic distance matrix of the xanthomonads confirms previous observations that pathovars that infect plants of the same botanical family do not necessarily belong to the same genomic group. Six legume-infecting pathovars cluster within one genomic group, but one pathovar, X. cam. pv. pisi is only distantly related to this group. There was also no genomic relationship between X. cam. pv. oryzicola and X. albilineans both of which infect Gramineae. Consequently, pathogenicity toward members of the same plant family is not a good indicator of the genomic relationships among xanthomonads nor is it a good taxonomic determinant.  相似文献   

19.
Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity.  相似文献   

20.
The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens. Ralstonia solanacearum, Xanthomoans axonopodis pv. vesicatoria, and Xanthomonas oryzae pv. oryzae are phytopathogenic bacteria, which can infect vegetables, cause severe yield loss. PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA. The technique of PCR-SSCP is being exploited so far, only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi. Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials. In this study, we developed PCR-SSCP technique to identify phytopathogenic bacteria. The PCR product was denatured and separated on a non-denaturing polyacrylamide gel. SSCP banding patterns were detected by silver staining of nucleic acids. We tested over 56 isolates of R. solanacearum, 44 isolates of X. axonopodis pv. vesicatoria, and 20 isolates of X. oryzae pv. oryzae. With the use of universal primer 16S rRNA, we could discriminate such species at the genus and species levels. Species-specific patterns were obtained for bacteria R. solanacearum, X. axonopodis pv. vesicatoria, and X. oryzae pv. oryzae. The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号