首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J. G. Mongeau  P. Robitaille  M. M. Grall 《CMAJ》1978,118(8):907-10,913
Seventy-seven children with chronic renal failure were examined at one hospital in the province of Quebec between 1970 and 1975; this represents an incidence of 2.5 per million population per year. The entities responsible for chronic renal failure were urinary tract malformation (in 36%), chronic glomerulonephritis (in 22%), congenital renal parenchymal malformation (in 21%) and hereditary nephropathy (in 13%). The evolution of chronic renal failure in children with either vesicoureteral reflux or a posterior urethral valve seemed to be related more to the initial severity of the disease than to the age at the time of diagnosis. Hence any screening program designed to detect kidney disease in schoolchildren would not prevent chronic renal failure, since at that age renal parenchymal damage seems to be irreversible. The manner in which chronic glomerulonephritis evolved depended on whether the nephrotic syndrome was present and on the type of histologic lesion. Children with congenital renal hypoplasia or dysplasia often presented with seizures due to hypertensive encephalopathy without obvious symptoms or signs of pre-existing renal disease. Among patients with familial nephropathy many of those with cystinosis underwent successful renal transplantation early in life.  相似文献   

3.
Exposure to mild hypoxia elicits a characteristic cerebrovascular response in mammals, including humans. Initially, cerebral blood flow (CBF) increases as much as twofold. The blood flow increase is blunted somewhat by a decreasing arterial Pco2 as a result of the hypoxia-induced hyperventilatory response. After a few days, CBF begins to fall back toward baseline levels as the blood oxygen-carrying capacity is increasing due to increasing hemoglobin concentration and packed red cell volume as a result of erythropoietin upregulation. By the end of 2 wk of hypoxic exposure, brain capillary density has increased with resultant decreased intercapillary distances. The relative time courses of these changes suggest that they are adjusted by different control signals and mechanisms. The CBF response appears linked to the blood oxygen-carrying capacity, whereas the hypoxia-induced brain angiogenesis appears to be in response to tissue hypoxia.  相似文献   

4.
Cytoplasmic transfer is an assisted reproductive technique that involves the infusion of ooplasm from a donor oocyte into a recipient oocyte of inferior developmental competence. Although this technique has shown some success for couples with recurrent in vitro fertilization failure, it results in mitochondrial heteroplasmy in the offspring, defined as the presence of two different mitochondrial genomes in the same individual. Because the long-term health consequences of mitochondrial heteroplasmy are unknown, there is a need for appropriate animal models to evaluate any physiological changes of dual mtDNA genotypes. This longitudinal study was designed as a preliminary screen of basic physiological functions for heteroplasmic mice (NZB mtDNA on a BALB/cByJ background). The mice were tested for cardiovascular and metabolic function, hematological parameters, body mass analysis, ovarian reserve, and tissue histologic abnormalities over a period of 15 mo. Heteroplasmic mice developed systemic hypertension that corrected over time and was accompanied by cardiac changes consistent with pulmonary hypertension. In addition, heteroplasmic animals had increased body mass and fat mass compared with controls at all ages. Finally, these animals had abnormalities in electrolytes and hematological parameters. Our findings suggest that there are significant physiological differences between heteroplasmic and control mice. Because ooplasm transfer appears to be consistently associated with mitochondrial heteroplasmy, children conceived through ooplasm transfer should be closely followed to determine if they are at risk for any health problems.  相似文献   

5.
Transferrin overexpression alters testicular function in aged mice   总被引:2,自引:0,他引:2  
Many studies have shown a correlation between transferrin (Tf) concentration and sperm yield in several mammalian species. We have used transgenic mice expressing human Tf (hTf) to investigate if overexpression of Tf increases the efficiency of mouse spermatogenesis. We demonstrated that a 36% increase of Tf does not ameliorate the efficiency of mouse spermatogenesis but on the contrary resulted in a 36% decrease of testis sperm reserves. Tf overexpression had no effect on testicular determination and development, however testicular function of these transgenic mice was affected in an age-dependent manner. At 16 months of age, testicular and epididymal weights were significantly reduced. While spermatogenesis was qualitatively normal, testicular functions were perturbed. In fact, testosterone rate after human chorionic gonadotropin (hCG) stimulation was lower in Tf overexpressing mice. Intratesticular concentration of estradiol-17beta was increased and fluid accumulation after ligation of rete testis was more abundant in these transgenic mice. Surprisingly, we found that endogenous Tf levels were also increased in Tf overexpressing mice and we demonstrated for the first time that Tf may serve to upregulate its own expression in testis. Collectively, our data show that Tf overexpression has negative effects on testicular function and that Tf levels require strict regulation in the testis.  相似文献   

6.
In addition to adrenergic innervation, cerebral arteries also contain neuronal nitric oxide synthase (nNOS)-expressing nerves that augment adrenergic nerve function. We examined the impact of development and chronic high-altitude hypoxia (3,820 m) on nNOS nerve function in near-term fetal and adult sheep middle cerebral arteries (MCA). Electrical stimulation-evoked release of norepinephrine (NE) was measured with HPLC and electrochemical detection, whereas nitric oxide (NO) release was measured by chemiluminescence. An inhibitor of NO synthase, N(omega)-nitro-l-arginine methyl ester (l-NAME), significantly inhibited stimulation-evoked NE release in MCA from normoxic fetal and adult sheep with no effect in MCA from hypoxic animals. Addition of the NO donor S-nitroso-N-acetyl-dl-penicillamine fully reversed the effect of l-NAME in MCA from normoxic animals with no effect in MCA from hypoxic animals. Electrical stimulation caused a significant increase in NO release in MCA from normoxic animals, an effect that was blocked by the neurotoxin tetrodotoxin, whereas there was no increase in NO release in MCA from hypoxic animals. Relative abundance of nNOS as measured by Western blot analysis was similar in normoxic fetal and adult MCA. However, after hypoxic acclimitization, nNOS levels dramatically declined in both fetal and adult MCA. These data suggest that the function of nNOS nerves declines during chronic high-altitude hypoxia, a functional change that may be related to a decline in nNOS protein levels.  相似文献   

7.
In rodents, submandibular salivary glands accumulate a number of biologically active peptides, and release some of them to both saliva and the bloodstream. Surgical removal of these glands (sialoadenectomy) alters the ability of the liver to regenerate after partial hepatectomy. We show here that 5 weeks after surgery, the liver of sialoadenectomized mice contained 40% fewer hepatocytes than the liver of sham-operated mice. We did not obtain evidence of necrotic cell death after surgery. In contrast, sialoadenectomy transiently increased apoptotic hepatocyte death, as revealed by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling (TUNEL) assay. DNA synthesis was determined in vivo by the incorporation of bromo-deoxyuridine (BrdU) into hepatocyte nuclei. BrdU-labeling progressively increased after sialoadenectomy. We conclude that sialoadenectomy induced a transient wave of apoptotic cell death followed by a rise in DNA synthesis but not by cell division. This reduced cell number but increased mean cell volume. In spite of these alterations in cellularity, the liver responded adequately to several stressful conditions, as judged by the lack of any differential effect of sialoadenectomy on liver glycogen and plasma glucose concentration after immobilization, aggressive encounter, or fasting. However, the liver of sialoadenectomized mice was more sensitive to the effect of a non-lethal dose of bacterial lipopolysaccharide (LPS) combined with d-galactosamine, as shown by the enhanced rise in plasma alanine aminotransferase and aspartate aminotransferase, and liver myeloperoxidase (MPO) activities. All these results indicate that a submandibular salivary glands-liver axis is involved in the maintenance of liver structure in mice. A disturbance of this axis induces an adaptive response that preserves the metabolic function of the liver but renders it more sensitive to bacterial endotoxins.  相似文献   

8.
Although acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation. In response to direct muscle stimulation, we found that maximal velocity of shortening of soleus muscle is increased and maximum tetanic force is decreased in AchE KO mice versus control animals. As the contractile properties of the soleus muscle were altered by AChE ablation, our results suggest cellular and molecular changes in AChE ablated muscle containing both fast and slow muscle fibres.  相似文献   

9.
Milkov V  Pironcheva G  Russev G 《Cytobios》2001,104(407):139-143
Kidneys are not only organs with an excretory function but they produce their own endocrine factors which are involved in supporting homeostasis in the organism. The kidneys are the organs in which metabolism and biodegradation of many hormones take place. Together with the liver, the kidneys actively take part in the catabolism of hormones.  相似文献   

10.
To determine the effects of chronic maternal renal insufficiency on fetal renal function, we studied nine fetuses whose mothers underwent subtotal nephrectomy at least 2 mo before mating (STNxF) and seven fetuses from intact ewes (IntF) (126-128 days of gestation, term 150 days). STNxF had lower hematocrit (P < 0.05), plasma chloride (P < 0.01), and creatinine levels (P < 0.01), and the length-to-width ratio of their kidneys was reduced (P < 0.05). They excreted twice as much urine (P < 0.05) and sodium (P < 0.01). Total (P = 0.01) and proximal fractional sodium reabsorptions (P < 0.05) were lower in STNxF; distal delivery of sodium (P < 0.05) and distal fractional sodium reabsorption (P < 0.05) were higher. They tended to have suppressed renin levels (P = 0.06). Infusions of amino acids (alanine, glycine, proline, and serine at 0.32 mmol/min for 1 h and 0.64 mmol/min for 2 h intravenously), known to stimulate renal blood flow and glomerular filtration rate in fetal sheep, did so in IntF (P < 0.01). Arterial pressure also increased (P < 0.01). These effects were not observed in STNxF. In summary, chronic maternal renal insufficiency was associated with profound alterations in fetal renal excretion of fluid and electrolytes and impaired renal hemodynamic and glomerular responses to amino acid infusion. Whether these marked changes in the renal function of fetuses carried by STNx ewes are associated with alterations in renal function in postnatal or adult life remains to be determined.  相似文献   

11.
To determine how histamine regulates endothelial barrier function through an integrative cytoskeletal network, we mathematically modeled the resistance across an endothelial cell-covered electrode as a function of cell-cell, cell-matrix, and transcellular resistances. Based on this approach, histamine initiated a rapid decrease in transendothelial resistance predominantly through decreases in cell-cell resistance in confluent cultured human umbilical vein endothelial cells (HUVECs). Restoration of resistance was characterized by initially increasing cell-matrix resistance, with later increases in cell-cell resistance. Thus histamine disrupts barrier function by specifically disrupting cell-cell adhesion and restores barrier function in part through direct effects on cell-matrix adhesion. To validate the precision of our technique, histamine increased the resistance in subconfluent HUVECs in which there was no cell-cell contact. Exposure of confluent monolayers to an antibody against cadherin-5 caused a predominant decrease in cell-cell resistance, whereas the resistance was unaffected by the antibody to cadherin-5 in subconfluent cells. Furthermore, we observed an increase predominantly in cell-cell resistance in ECV304 cells that were transfected with a plasmid containing a glucocorticoid-inducible promoter controlling expression of E-cadherin. Transmission electron microscopy confirmed tens of nanometer displacements between adjacent cells at a time point in which histamine maximally decreased cell-cell resistance.  相似文献   

12.
13.
Attenuation of endothelium-derived nitric oxide (NO) synthesis is a hallmark of endothelial dysfunction. Early detection of this disorder may have therapeutic and prognostic implications. Plasma nitrite mirrors acute and chronic changes in endothelial NO-synthase activity. We hypothesized that local plasma nitrite concentration increases during reactive hyperemia of the forearm, reflecting endothelial function. In healthy subjects (n = 11) plasma nitrite and nitrate were determined at baseline and during reactive hyperemia of the forearm using reductive gas-phase chemiluminescence and flow-injection analysis, respectively. Endothelium-dependent dilation of the brachial artery was measured as flow-mediated dilation (FMD) using high-resolution ultrasound. Results were compared to patients with endothelial dysfunction as defined by reduced FMD (n = 11). Reactive hyperemia of the forearm increased local plasma nitrite concentration from 68 +/- 5 to 126 +/- 13 nmol/L (p < 0.01), whereas in endothelial dysfunction nitrite remained unaffected (116 +/- 12 to 104 +/- 10 nmol/L; n.s.), corresponding to nitrite reserves of 94 +/- 21 and -8 +/- 4%. This was accompanied by a significantly greater increase in brachial artery diameter (FMD: 8.5 +/- 0.4% vs 2.9 +/- 0.5%, for healthy subjects and endothelial dysfunction, respectively; p < 0.001). This observation suggests that nitrite changes reflect endothelial function. Assessment of local plasma nitrite during reactive hyperemia may open new avenues in the diagnosis of vascular function.  相似文献   

14.
Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.  相似文献   

15.
Brooks, E. M., A. L. Morgan, J. M. Pierzga, S. L. Wladkowski, J. T. O'Gorman, J. A. Derr, and W. L. Kenney. Chronic hormone replacement therapy alters thermoregulatory and vasomotor function in postmenopausal women. J. Appl.Physiol. 83(2): 477-484, 1997.This investigationexamined effects of chronic (2 yr) hormone replacement therapy (HRT),both estrogen replacement therapy (ERT) and estrogen plus progesteronetherapy (E+P), on core temperature and skin blood flow responses ofpostmenopausal women. Twenty-five postmenopausal women [9 not onHRT (NO), 8 on ERT, 8 on E+P] exercised on a cycle ergometer for1 h at an ambient temperature of 36°C. Cutaneous vascularconductance (CVC) was monitored by laser-Doppler flowmetry, and forearmvascular conductance (FVC) was measured by using venous occlusionplethysmography. Iontophoresis of bretylium tosylate was performedbefore exercise to block local vasoconstrictor (VC) activity at oneskin site on the forearm. Rectal temperature (Tre) was ~0.5°C lower forthe ERT group (P < 0.01) comparedwith E+P and NO groups at rest and throughout exercise. FVC: mean body temperature (Tb) and CVC:Tb curves were shifted~0.5°C leftward for the ERT group(P < 0.0001). Baseline CVC wassignificantly higher in the ERT group(P < 0.05), but there was nointeraction between bretylium treatment and groups once exercise wasinitiated. These results suggest that1) chronic ERT likely acts centrally to decrease Tre,2) ERT lowers theTre at which heat-loss effector mechanisms are initiated, primarily by actions on active cutaneous vasodilation, and 3) addition ofexogenous progestins in HRT effectively blocks these effects.

  相似文献   

16.
Myocardial physiology in the aftermath of myocardial infarction (MI) before remodeling is an under-explored area of investigation. Here, we describe the effects of MI on the cardiac sarcomere with focus on the possible contributions of reactive oxygen species. We surgically induced MI in 6-7-month-old female CD1 mice by ligation of the left anterior descending coronary artery. Data were collected 3-4 days after MI or sham (SH) surgery. MI hearts demonstrated ventricular dilatation and systolic dysfunction upon echo cardiographic analysis. Sub-maximum Ca-activated tension in detergent-extracted fiber bundles from papillary muscles increased significantly in the preparations from MI hearts. Ca(2+) sensitivity increased after MI, whereas cooperativity of activation decreased. To assess myosin enzymatic integrity we measured splitting of Ca-ATP in myofibrillar preparations, which demonstrated a decline in Ca-ATPase activity of myofilament myosin. Biochemical analysis demonstrated post-translational modification of sarcomeric proteins. Phosphorylation of cardiac troponin I and myosin light chain 2 was reduced after MI in papillary samples, as measured using a phospho-specific stain. Tropomyosin was oxidized after MI, forming disulfide products detectable by diagonal non-reducing-reducing SDS-PAGE. Our analysis of myocardial protein oxidation post-MI also demonstrated increased S-glutathionylation. We functionally linked protein oxidation with sarcomere function by treating skinned fibers with the sulfhydryl reducing agent dithiothreitol, which reduced Ca(2+) sensitivity in MI, but not SH, samples. Our data indicate important structural and functional alterations to the cardiac sarcomere after MI, and the contribution of protein oxidation to this process.  相似文献   

17.
Previous studies have demonstrated that responses to endothelium-dependent vasodilators are absent in the aortas from mice deficient in expression of endothelial nitric oxide synthase (eNOS -/- mice), whereas responses in the cerebral microcirculation are preserved. We tested the hypothesis that in the absence of eNOS, other vasodilator pathways compensate to preserve endothelium-dependent relaxation in the coronary circulation. Diameters of isolated, pressurized coronary arteries from eNOS -/-, eNOS heterozygous (+/-), and wild-type mice (eNOS +/+ and C57BL/6J) were measured by video microscopy. ACh (an endothelium-dependent agonist) produced vasodilation in wild-type mice. This response was normal in eNOS +/- mice and was largely preserved in eNOS -/- mice. Responses to nitroprusside were also similar in arteries from eNOS +/+, eNOS +/-, and eNOS -/- mice. Dilation to ACh was inhibited by N(G)-nitro-L-arginine, an inhibitor of NOS in control and eNOS -/- mice. In contrast, trifluoromethylphenylimidazole, an inhibitor of neuronal NOS (nNOS), decreased ACh-induced dilation in arteries from eNOS-deficient mice but had no effect on responses in wild-type mice. Indomethacin, an inhibitor of cyclooxygenase, decreased vasodilation to ACh in eNOS-deficient, but not wild-type, mice. Thus, in the absence of eNOS, dilation of coronary arteries to ACh is preserved by other vasodilator mechanisms.  相似文献   

18.
19.
Determination of glomerular filtration rate (GFR) in conscious mice is cumbersome for the experimenter and stressful for the animals. Here we report on a simple new technique allowing the transcutaneous measurement of GFR in conscious mice. This approach extends our previously developed technique for rats to mice. The technique relies on a miniaturized device equipped with an internal memory that permits the transcutaneous measurement of the elimination kinetics of the fluorescent renal marker FITC-sinistrin. This device is described and validated compared with FITC-sinistrin plasma clearance in healthy, unilaterally nephrectomized and pcy mice. In summary, we describe a technique allowing the measurement of renal function in freely moving mice independent of blood or urine sampling as well as of laboratory assays.  相似文献   

20.
The aim of the present study was to characterize the function of resistance arteries, and the aorta, in rats with adenine-induced chronic renal failure (A-CRF). Sprague-Dawley rats were randomized to chow with or without adenine supplementation. After 6-10 wk, mesenteric arteries and thoracic aortas were analyzed ex vivo by wire myography. Plasma creatinine concentrations were elevated twofold at 2 wk, and eight-fold at the time of death in A-CRF animals. Ambulatory systolic and diastolic blood pressures measured by radiotelemetry were significantly elevated in A-CRF animals from week 3 and onward. At death, A-CRF animals had anemia, hyperphosphatemia, hyperparathyroidism, and elevated plasma levels of asymmetric dimethylarginine and oxidative stress markers. There were no significant differences between groups in the sensitivity, or maximal response, to ACh, sodium nitroprusside (SNP), norepinephrine, or phenylephrine in either mesenteric arteries or aortas. However, in A-CRF animals, the rate of aortic relaxation was significantly reduced following washout of KCl (both in intact and endothelium-denuded aorta) and in response to ACh and SNP. Also the rate of contraction in response to KCl was significantly reduced in A-CRF animals both in mesenteric arteries and aortas. The media of A-CRF aortas was thickened and showed focal areas of fragmented elastic lamellae and disorganized smooth muscle cells. No vascular calcifications could be detected. These results indicate that severe renal failure for a duration of less than 10 wk in this model primarily affects the aorta and mainly slows the rate of relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号