首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Aliphatic amidases (EC 3.5.1.4) are enzymes catalysing the hydrolysis of short-chain amides to produce ammonia and the corresponding organic acid. Such an amidase, AmiE, has been detected previously in Helicobacter pylori. Analysis of the complete H. pylori genome sequence revealed the existence of a duplicated amidase gene that we named amiF. The corresponding AmiF protein is 34% identical to its AmiE paralogue. Because gene duplication is widely considered to be a fundamental process in the acquisition of novel enzymatic functions, we decided to study and compare the functions of the paralogous amidases of H. pylori. AmiE and AmiF proteins were overproduced in Escherichia coli and purified by a two-step chromatographic procedure. The two H. pylori amidases could be distinguished by different biochemical characteristics such as optimum pH or temperature. AmiE hydrolysed propionamide, acetamide and acrylamide and had no activity with formamide. AmiF presented an unexpected substrate specificity: it only hydrolysed formamide. AmiF is thus the first formamidase (EC 3.5.1.49) related to aliphatic amidases to be described. Cys-165 in AmiE and Cys-166 in AmiF were identified as residues essential for catalysis of the corresponding enzymes. H. pylori strains carrying single and double mutations of amiE and amiF were constructed. The substrate specificities of these enzymes were confirmed in H. pylori. Production of AmiE and AmiF proteins is dependent on the activity of other enzymes involved in the nitrogen metabolism of H. pylori (urease and arginase respectively). Our results strongly suggest that (i) the H. pylori paralogous amidases have evolved to achieve enzymatic specialization after ancestral gene duplication; and (ii) the production of these enzymes is regulated to maintain intracellular nitrogen balance in H. pylori.  相似文献   

2.
Helicobacter pylori AmiF formamidase that hydrolyzes formamide to produce formic acid and ammonia belongs to a member of the nitrilase superfamily. The crystal structure of AmiF was solved to 1.75A resolution using single-wavelength anomalous dispersion methods. The structure consists of a homohexamer related by 3-fold symmetry in which each subunit has an alpha-beta-beta-alpha four-layer architecture characteristic of the nitrilase superfamily. One exterior alpha layer faces the solvent, whereas the other one associates with that of the neighbor subunit, forming a tight alpha-beta-beta-alpha-alpha-beta-beta-alpha dimer. The apo and liganded crystal structures of an inactive mutant C166S were also determined to 2.50 and 2.30 A, respectively. These structures reveal a small formamide-binding pocket that includes Cys(166), Glu(60), and Lys(133) catalytic residues, in which Cys(166) acts as a nucleophile. Analysis of the liganded AmiF and N-carbamoyl d-amino acid amidohydrolase binding pockets reveals a common Cys-Glu-Lys triad, another conserved glutamate, and different subsets of ligand-binding residues. Molecular dynamic simulations show that the conserved triad has minimal fluctuations, catalyzing the hydrolysis of a specific nitrile or amide in the nitrilase superfamily efficiently.  相似文献   

3.
4.
While a variety of chemical transformations related to the aerobic degradation of L-tryptophan (kynurenine pathway), and most of the genes and corresponding enzymes involved therein have been predominantly characterized in eukaryotes, relatively little was known about this pathway in bacteria. Using genome comparative analysis techniques we have predicted the existence of the three-step pathway of aerobic L-tryptophan degradation to anthranilate (anthranilate pathway) in several bacteria. Based on the chromosomal gene clustering analysis, we have identified a previously unknown gene encoding for kynurenine formamidase (EC 3.5.1.19) involved with the second step of the anthranilate pathway. This functional prediction was experimentally verified by cloning, expression and enzymatic characterization of recombinant kynurenine formamidase orthologs from Bacillus cereus, Pseudomonas aeruginosa and Ralstonia metallidurans. Experimental verification of the inferred anthranilate pathway was achieved by functional expression in Escherichia coli of the R. metallidurans putative kynBAU operon encoding three required enzymes: tryptophan 2,3-dioxygenase (gene kynA), kynurenine formamidase (gene kynB), and kynureninase (gene kynU). Our data provide the first experimental evidence of the connection between these genes (only one of which, kynU, was previously characterized) and L-tryptophan aerobic degradation pathway in bacteria.  相似文献   

5.
6.
Two forms of kynurenine formamidase (EC 3.5.1.9; aryl-formylamine amidohydrolase) are present in extracts of Streptomyces parvulus. The higher molecular weight enzyme (Mr = 42 000), kynurenine formamidase I, appears to be constitutive and is present at relatively constant but low levels in antibiotic producing and nonproducing cultures, whereas the synthesis of the lower molecular weight form (Mr = 25 000), kynurenine formamidase II, is initiated just prior to the onset of actinomycin formation. It is postulated (i) that kynurenine formamidase II catalyzes the second step in the pathway from tryptophan----actinocin, and (ii) that it is regulated specifically for the specialized function of actinomycin biosynthesis. The role of kynurenine formamidase I is unknown. Formamidase I and II activities were purified from extracts of S. parvulus and kinetic parameters of the two enzymes were determined. Although some of the properties of the two enzymes are quite similar (substrate specificities, Km values), some striking differences were noted (pH and temperature optima, molecular size, chromatographic properties, sensitivity to certain ions and chemicals). Mutant studies suggest that expression of the gene(s) coding for formamidase II activity play an essential role in regulating the formation of actinocin and, hence, antibiotic synthesis. Kynurenine formamidase activity was also found in a representative number of Streptomyces species and related organisms suggesting that the enzyme may function in the degradative metabolism of tryptophan by certain actinomycetes in nature.  相似文献   

7.
TrwD, the VirB11 homologue in conjugative plasmid R388, is a member of the large secretion ATPase superfamily, which includes ATPases from bacterial type II and type IV secretion systems, type IV pilus, and archaeal flagellae assembly. Based on structural studies of the VirB11 homologues in Helicobacter pylori and Brucella suis and the archaeal type II secretion ATPase GspE, a unified mechanism for the secretion ATPase superfamily has been proposed. Here, we have found that the ATP turnover of TrwD is down-regulated by physiological concentrations of magnesium. This regulation is exerted by increasing the affinity for ADP, hence delaying product release. Circular dichroism and limited proteolysis analysis indicate that magnesium induces conformational changes in the protein that promote a more rigid, but less active, form of the enzyme. The results shown here provide new insights into the catalytic mechanism of the secretion ATPase superfamily.  相似文献   

8.
Bacterial lipases are attracting an enormous amount of attention due to their wide biotechnological applications and due to their roles as virulence factors in some bacteria. Helicobacter pylori is a significant and widespread pathogen which produces a lipase(s) and phospholipases that seem to play a role in mucus degradation and the release of proinflammatory and cytotoxic compounds. However, no H. pylori lipase(s) has been isolated and described previously. Therefore, a search for putative lipase-encoding genes was performed by comparing the amino acid sequences of 53 known lipolytic enzymes with the deduced proteome of H. pylori. As a result, we isolated, cloned, purified, and characterized EstV, a novel lipolytic enzyme encoded by open reading frame HP0739 of H. pylori 26695, and classified it in family V of the bacterial lipases. This enzyme has the properties of a small, cell-bound carboxylesterase (EC 3.1.1.1) that is active mostly with short-chain substrates and does not exhibit interfacial activation. EstV is stable and does not require additional cofactors, and the maximum activity occurs at 50 degrees C and pH 10. This unique enzyme is the first lipase isolated from H. pylori that has been described, and it might contribute to ulcer development, as inhibition by two antiulcer substances (beta-aescin and glycyrrhizic acid) suggests. EstV is also the first lipase from an epsilon-proteobacterium to be described. Furthermore, this enzyme is a new member of family V, probably the least-known family of bacterial lipases, and the first lipase of this family for which kinetic behavior, inhibition by natural substances, and other key biochemical features are reported.  相似文献   

9.
Plaunotol, a known antiulcer drug, has antibacterial activities against Helicobacter pylori. Plaunotol thiourea derivatives 2--4 and diol derivatives 6--10 were designed in search for a compound with high antibacterial activities. Thiourea derivatives 2--4 were synthesized regioselectively using our effective synthetic route for plaunotol (1), and diol derivatives 6--10 were also synthesized. Their antibacterial activities against H. pylori are described and we found that the most potent antibacterial agent was C1-thiourea derivative 2c.  相似文献   

10.
FlaA1 from the human pathogen Helicobacter pylori is an enzyme involved in saccharide biosynthesis that has been shown to be essential for pathogenicity. Here we present five crystal structures of FlaA1 in the presence of substrate, inhibitors, and bound cofactor, with resolutions ranging from 2.8 to 1.9 A. These structures reveal that the enzyme is a novel member of the short-chain dehydrogenase/reductase superfamily. Additional electron microscopy studies show the enzyme to possess a hexameric doughnut-shaped quaternary structure. NMR analyses of "real time" enzyme-substrate reactions indicate that FlaA1 is a UDP-GlcNAc-inverting 4,6-dehydratase, suggesting that the enzyme catalyzes the first step in the biosynthetic pathway of a pseudaminic acid derivative, which is implicated in protein glycosylation. Guided by evidence from site-directed mutagenesis and computational simulations, a three-step reaction mechanism is proposed that involves Lys-133 functioning as both a catalytic acid and base.  相似文献   

11.
Salivary agglutinin (SAG), lung glycoprotein-340 (gp-340) and Deleted in Malignant Brain Tumours 1 (DMBT1) are three names for identical proteins encoded by the dmbt1 gene. DMBT1/SAG/gp-340 belongs to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins, a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. On the one hand, DMBT1 may represent an innate defence factor acting as a pattern recognition molecule. It interacts with a broad range of pathogens, including cariogenic streptococci and Helicobacter pylori, influenza viruses and HIV, but also with mucosal defence proteins, such as IgA, surfactant proteins and MUC5B. Stimulation of alveolar macrophage migration, suppression of neutrophil oxidative burst and activation of the complement cascade point further to an important role in the regulation of inflammatory responses. On the other hand, DMBT1 has been demonstrated to play a role in epithelial and stem cell differentiation. Inactivation of the gene coding for this protein may lead to disturbed differentiation, possibly resulting in tumour formation. These data strongly point to a role for DMBT1 as a molecule linking innate immune processes with regenerative processes.  相似文献   

12.
The urea cycle enzyme arginase (EC 3.5.3.1) hydrolyzes l-arginine to l-ornithine and urea. Mammalian arginases require manganese, have a highly alkaline pH optimum and are resistant to reducing agents. The gastric human pathogen, Helicobacter pylori, also has a complete urea cycle and contains the rocF gene encoding arginase (RocF), which is involved in the pathogenesis of H. pylori infection. Its arginase is specifically involved in acid resistance and inhibits host nitric oxide production. The rocF gene was found to confer arginase activity to Escherichia coli; disruption of plasmid-borne rocF abolished arginase activity. A translationally fused His(6)-RocF was purified from E. coli under nondenaturing conditions and had catalytic activity. Remarkably, the purified enzyme had an acidic pH optimum of 6.1. Both purified arginase and arginase-containing H. pylori extracts exhibited optimal catalytic activity with cobalt as a metal cofactor; manganese and nickel were significantly less efficient in catalyzing the hydrolysis of arginine. Viable H. pylori or E. coli containing rocF had significantly more arginase activity when grown with cobalt in the culture medium than when grown with manganese or no divalent metal. His(6)-RocF arginase activity was inhibited by low concentrations of reducing agents. Antibodies raised to purified His(6)-RocF reacted with both H. pylori and E. coli extracts containing arginase, but not with extracts from rocF mutants of H. pylori or E. coli lacking the rocF gene. The results indicate that H. pylori RocF is necessary and sufficient for arginase activity and has unparalleled features among the arginase superfamily, which may reflect the unique gastric ecological niche of this organism.  相似文献   

13.
The lipid A domain anchors lipopolysaccharide (LPS) to the outer membrane and is typically a disaccharide of glucosamine that is both acylated and phosphorylated. The core and O-antigen carbohydrate domains are linked to the lipid A moiety through the eight-carbon sugar 3-deoxy-D-manno-octulosonic acid known as Kdo. Helicobacter pylori LPS has been characterized as having a single Kdo residue attached to lipid A, predicting in vivo a monofunctional Kdo transferase (WaaA). However, using an in vitro assay system we demonstrate that H. pylori WaaA is a bifunctional enzyme transferring two Kdo sugars to the tetra-acylated lipid A precursor lipid IV(A). In the present work we report the discovery of a Kdo hydrolase in membranes of H. pylori capable of removing the outer Kdo sugar from Kdo2-lipid A. Enzymatic removal of the Kdo group was dependent upon prior removal of the 1-phosphate group from the lipid A domain, and mass spectrometric analysis of the reaction product confirmed the enzymatic removal of a single Kdo residue by the Kdo-trimming enzyme. This is the first characterization of a Kdo hydrolase involved in the modification of gram-negative bacterial LPS.  相似文献   

14.
Helicobacter pylori is naturally competent for transformation, but the DNA uptake system of this bacterium is only partially characterized, and nothing is known about the regulation of competence in H. pylori. To identify other components involved in transformation or competence regulation in this species, we screened a mutant library for competence-deficient mutants. This resulted in the identification of a novel, Helicobacter-specific competence gene (comH) whose function is essential for transformation of H. pylori with chromosomal DNA fragments as well as with plasmids. Complementation of comH mutants in trans completely restored competence. Unlike other transformation genes of H. pylori, comH does not belong to a known family of orthologous genes. Moreover, no significant homologs of comH were identified in currently available databases of bacterial genome sequences. The comH gene codes for a protein with an N-terminal leader sequence and is present in both highly competent and less-efficient transforming H. pylori strains. A comH homolog was found in Helicobacter acinonychis but not in Helicobacter felis and Helicobacter mustelae.  相似文献   

15.
In Corynebacterium glutamicum the LysE carrier protein exhibits the unique function of exporting L-lysine. We here analyze the membrane topology of LysE, a protein of 236 amino acyl residues, using PhoA- and LacZ-fusions. The amino-terminal end of LysE is located in the cytoplasm whereas the carboxy-terminal end is found in the periplasm. Although 6 hydrophobic domains were identified based on hydropathy analyses, only five transmembrane spanning helices appear to be present. The additional hydrophobic segment may dip into the membrane or be surface localized. We show that LysE is a member of a family of proteins found, for example, in Escherichia coil, Bacillus subtilis, Mycobacterium tuberculosis and Helicobacter pylori. This family, which we have designated the LysE family, is distantly related to two additional protein families which we have designated the YahN and CadD families. These three families, the members of which exhibit similar sizes, hydropathy profiles, and sequence motifs comprise the LysE superfamily. Functionally characterized members of the LysE superfamily export L-lysine, cadmium and possibly quarternary amines. We suggest that LysE superfamily members will prove to catalyze export of a variety of biologically important solutes.  相似文献   

16.
The enzyme activities responsible for carboxylation reactions in cell extracts of the gastric pathogen Helicobacter pylori have been studied by H14CO3- fixation and spectrophotometric assays. Acetyl coenzyme A carboxylase (EC 6.4.1.2) and malic enzyme (EC 1.1.1.40) activities were detected, whereas pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxylase (EC 4.1.3.1) and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) activities were absent. However, a pyruvate-dependent, ATP-independent, and avidin-insensitive H14CO3- fixation activity, which was shown to be due to the isotope exchange reaction of pyruvate:flavodoxin oxidoreductase (EC 1.2.7.1), was present. The purified enzyme is composed of four subunits of 47, 36, 24, and 14 kDa. N-terminal sequence analysis showed that this enzyme is related to a recently recognized group of four-subunit pyruvate:ferredoxin oxidoreductases previously known only from hyperthermophiles. This enzyme from H. pylori was found to mediate the reduction of a number of artificial electron acceptors in addition to a flavodoxin isolated from H. pylori extracts, which is likely to be the in vivo electron acceptor. Indirect evidence that the enzyme is capable of in vitro reduction of the anti-H. pylori drug metronidazole was also obtained.  相似文献   

17.
BACKGROUND: The lipopolysaccharide of Helicobacter pylori plays an important role in colonization and pathogenicity. The present study sought to compare structural and biological features of lipopolysaccharides from gastric and enterohepatic Helicobacter spp. not previously characterized. MATERIALS AND METHODS: Purified lipopolysaccharides from four gastric Helicobacter spp. (H. pylori, Helicobacter felis, Helicobacter bizzozeronii and Helicobacter mustelae) and four enterohepatic Helicobacter spp. (Helicobacter hepaticus, Helicobacter bilis, 'Helicobacter sp. flexispira' and Helicobacter pullorum) were structurally characterized using electrophoretic, serological and chemical methods. RESULTS: Structural insights into all three moieties of the lipopolysaccharides, i.e. lipid A, core and O-polysaccharide chains, were gained. All species expressed lipopolysaccharides bearing an O-polysaccharide chain, but H. mustelae and H. hepaticus produced truncated semirough lipopolysaccharides. However, in contrast to lipopolysaccharides of H. pylori and H. mustelae, no blood group mimicry was detected in the other Helicobacter spp. examined. Intra-species, but not interspecies, fatty acid profiles of lipopolysaccharides were identical within the genus. Although shared lipopolysaccharide-core epitopes with H. pylori occurred, differing structural characteristics were noted in this lipopolysaccharide region of some Helicobacter spp. The lipopolysaccharides of the gastric helicobacters, H. bizzozeronii and H. mustelae, had relative Limulus amoebocyte lysate activities which clustered around that of H. pylori lipopolysaccharide, whereas H. bilis, 'Helicobacter sp. flexispira' and H. hepaticus formed a cluster with approximately 1000-10,000-fold lower activities. H. pullorum lipopolysaccharide had the highest relative Limulus amoebocyte lysate activity of all the helicobacter lipopolysaccharides (10-fold higher than that of H. pylori lipopolysaccharide), and all the lipopolysaccharides of enterohepatic Helicobacter spp. were capable of inducing nuclear factor-Kappa B(NF-kappaB) activation. CONCLUSIONS: The collective results demonstrate the structural heterogeneity and pathogenic potential of lipopolysaccharides of the Helicobacter genus as a group and these differences in lipopolysaccharides may be indicative of adaptation of the bacteria to different ecological niches.  相似文献   

18.
Two enzymic forms of kynurenine formamidase (EC 3.5.1.9) from Drosophila melanogaster were separated and partially purified by pH fractionation, (NH4) 2SO4 fractionation and Sephadex G-75 gel filtration. The enzymes were also separated by DEAE-cellulose ion-exchange chromatography and distinguished by their different rates of thermal inactivation. The multiple forms are termed formamidase I and formamidase II. The molecular weight of formamidase I as measured by Sephadex G-75 chromatography is 60 000 and that of formamidase II is 31 000. The pH optima are broad, ranging between 6.7 and 7.8 for formamidase I and 6.5 and 8.0 for formamidase II. The apparent Km values are 5-10(-3) and 0.83-10(-3) M, resepctively. The possibility that formamidase II is an active subunit of formamidase I is discussed, although neither enzyme will convert to the other when separated and rechromatographed. Eight organisms were tested for the presence or absence of multiple forms of formamidase. Drosophila melanogaster and Drosophila virilis have both enzymes; cow, chicken, yeast and housefly have formamidase I only, and mouse and frog have formamidase II only.  相似文献   

19.
Wu D  Zhang L  Kong Y  Du J  Chen S  Chen J  Ding J  Jiang H  Shen X 《Proteins》2008,72(4):1148-1160
D-Alanine-D-alanine ligase is the second enzyme in the D-Ala branch of bacterial cell wall peptidoglycan assembly, and recognized as an attractive antimicrobial target. In this work, the D-Ala-D-Ala ligase of Helicobacter pylori strain SS1 (HpDdl) was kinetically and structurally characterized. The determined apparent K(m) of ATP (0.87 microM), the K(m1) (1.89 mM) and K(m2) of D-Ala (627 mM), and the k(cat) (115 min(-1)) at pH 8.0 indicated its relatively weak binding affinity and poor catalytic activity against the substrate D-Ala in vitro. However, by complementary assay of expressing HpDdl in Escherichia coli Delta ddl mutant, HpDdl was confirmed to be capable of D-Ala-D-Ala ligating in vivo. Through sequence alignment with other members of the D-Ala-D-X ligase superfamily, HpDdl keeps two conservatively substituted residues (Ile16 and Leu241) and two nonconserved residues (Leu308 and Tyr311) broadly located in the active region of the enzyme. Kinetic analyses against the corresponding HpDdl mutants (I16V, L241Y, L241F, L308T, and Y311S) suggested that these residues, especially Leu308 and Tyr311, might partly contribute to the unique catalytic properties of the enzyme. This was fairly proved by the crystal structure of HpDdl, which revealed that there is a 3(10)-helix (including residues from Gly306 to Leu312) near the D-Ala binding region in the C-terminal domain, where HpDdl has two sequence deletions compared with other homologs. Such 3(10)-helix may participate in D-Ala binding and conformational change of the enzyme. Our present work hopefully provides useful information for understanding the D-Ala-D-Ala ligase of Helicobacter pylori.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号