首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incomplete reproductive isolation promotes gene flow between diverging taxa. However, any gene encoding for traits involved in the reproductive barriers will be less prone to introgression than neutral markers. Comparing introgression rates among loci is thus informative of the number and functions of loci involved in the reproductive barriers. This study aimed at identifying possible mechanisms of restriction to gene flow across a zone of recent secondary contact between Larus argentatus and Larus cachinnans by comparing introgression patterns for nine microsatellite loci, a fragment of mitochondrial DNA and a set of phenotypic traits. The low linkage disequilibrium between neutral nuclear markers indicated introgression without any barrier to gene flow. However, asymmetric introgression of mitochondrial DNA suggested that interspecific crosses may be more successful in one direction. The introgression rate for phenotypic traits was variable and low compared to neutral molecular markers. This was particularly evident in colouration of bare parts: individuals with intermediate colouration were scarcer in sympatry than expected if the genomes recombined freely. We hypothesized that one of these variables, the orbital ring colour, may play a role in mate choice, acting as an incomplete premating barrier through assortative mating. This study emphasizes that multilocus approaches are useful to discriminate among possible mechanisms responsible for the maintenance of hybrid zones.  相似文献   

2.
Gompert Z  Buerkle CA 《Molecular ecology》2011,20(10):2111-2127
We developed a Bayesian genomic cline model to study the genetic architecture of adaptive divergence and reproductive isolation between hybridizing lineages. This model quantifies locus‐specific patterns of introgression with two cline parameters that describe the probability of locus‐specific ancestry as a function of genome‐wide admixture. ‘Outlier’ loci with extreme patterns of introgression relative to most of the genome can be identified. These loci are potentially associated with adaptive divergence or reproductive isolation. We simulated genetic data for admixed populations that included neutral introgression, as well as loci that were subject to directional, epistatic or underdominant selection, and analysed these data using the Bayesian genomic cline model. Under many demographic conditions, underdominance or directional selection had detectable and predictable effects on cline parameters, and ‘outlier’ loci were greatly enriched for genetic regions affected by selection. We also analysed previously published genetic data from two transects through a hybrid zone between Mus domesticus and M. musculus. We found considerable variation in rates of introgression across the genome and particularly low rates of introgression for two X‐linked markers. There were similarities and differences in patterns of introgression between the two transects, which likely reflects a combination of stochastic variability because of genetic drift and geographic variation in the genetic architecture of reproductive isolation. By providing a robust framework to quantify and compare patterns of introgression among genetic regions and populations, the Bayesian genomic cline model will advance our understanding of the genetics of reproductive isolation and the speciation process.  相似文献   

3.
Hybridizing populations of blue mussels, Mytilus edulis and Mytilus trossulus, in Cobscook Bay (eastern Maine) have been used by our laboratory to study the evolution of gamete incompatibility and molecular evolution of the vitelline coat lysin proteins expressed in sperm. The M7 lysin locus has been the most studied of the three lysins, but evidence for positive selection necessary to help confirm its role in gamete recognition in western Atlantic hybrid zones is contradictory. We developed an alternative test, based on rates of introgression at M7 lysin. Contrary to expectations, introgression at this locus is much higher (instead of much lower) than is introgression at neutral markers. In this article, we present simulations, constructed using synthetic populations of combinations of admixed genotypes, representing various hybrid offspring categories. Simulations produced variation in introgression across loci, but did not generate the massive introgression at M7 lysin observed in natural populations in Cobscook Bay. We consider these results in the context of selection operating on gamete recognition loci, both within and between species, during the third stage of allopatric speciation in Mytilus.  相似文献   

4.
We studied the genetic basis of post-zygotic isolation in the marine mussels Mytilus edulis and Mytilus galloprovincialis. Evidence was obtained for a high number of recessive Dobzhansky-Muller substitutions in the genome of these two mussel taxa. We analysed the segregation of unlinked diagnostic markers in the progeny of two backcrosses and an F2 cross, 36 h and 200 days after fertilization. Directional selection favouring M. galloprovincialis genotypes was observed in both kinds of cross. In the F2, epistatic interactions between each pair of chromosome fragments mapped by the markers were identified in addition. Our results imply that homozygous-homozygous interactions are required for breakdown of coadaptation, in accordance with the dominance theory of post-zygotic isolation. Endogenous post-zygotic selection distributed over many loci throughout the genome provides the missing factor explaining the astonishing persistence and strength of barriers to neutral introgression in such a dispersive taxon as Mytilus.  相似文献   

5.
Unequal differentiation between two types of loci (allozyme and DNA markers) across a Mytilus hybrid zone has recently been claimed as evidence for direct selection on some allozyme loci. We provide here a counter-example: a noncoding DNA locus that exhibits as much differentiation as the incriminated allozymes do. The levels of genetic differentiation varied widely among both allozymes and noncoding DNA markers and no clear difference emerged between the two types of markers. This suggests that the strong interlocus variance in genetic differentiation has been confounded with a discrepancy between marker types as a result of an insufficient and unbalanced locus sampling. Heterogeneity in differentiation among neutral loci can be created by stochastic variance during the allopatric divergence preceding a secondary contact. In hybrid zones, a further source of variance is differential introgression among chromosomal regions after the secondary contact owing to the local influence of selected genes on more or less distant markers. However, the degree of differentiation alone gives no way to distinguish indirect pseudo-selection (a regular and ubiquitous feature of hybrid zones) from direct selection. More generally, we suggest that comparative neutrality tests based on discrepancies among marker types have to be applied with caution when the presence of semi-permeable genetic barriers to gene exchange is suspected.  相似文献   

6.
7.
Adaptation to local conditions within demes balanced by migration can maintain polymorphisms for variants that reduce fitness in certain ecological contexts. Here, we address the effects of such polymorphisms on the rate of introgression of neutral marker genes, possibly genetically linked to targets of selection. Barriers to neutral gene flow are expected to increase with linkage to targets of local selection and with differences between demes in the frequencies of locally adapted alleles. This expectation is borne out under purifying and disruptive selection, regimes that promote monomorphism within demes. In contrast, overdominance within demes induces minimal barriers to neutral introgression even in the face of very large differences between demes in the frequencies of locally adapted alleles. Further, segregation distortion, a phenomenon observed in a number of interspecific hybrids, can in fact promote transmission by migrants to future generations at rates exceeding those of residents.  相似文献   

8.
Genomic scans of multiple populations often reveal marker loci with greatly increased differentiation between populations. Often this differentiation coincides in space with contrasts in ecological factors, forming a genetic-environment association (GEA). GEAs imply a role for local adaptation, and so it is tempting to conclude that the strongly differentiated markers are themselves under ecologically based divergent selection, or are closely linked to loci under such selection. Here, we highlight an alternative and neglected explanation: intrinsic (i.e. environment-independent) pre- or post-zygotic genetic incompatibilities rather than local adaptation can be responsible for increased differentiation. Intrinsic genetic incompatibilities create endogenous barriers to gene flow, also known as tension zones, whose location can shift over time. However, tension zones have a tendency to become trapped by, and therefore to coincide with, exogenous barriers due to ecological selection. This coupling of endogenous and exogenous barriers can occur easily in spatially subdivided populations, even if the loci involved are unlinked. The result is that local adaptation explains where genetic breaks are positioned, but not necessarily their existence, which can be best explained by endogenous incompatibilities. More precisely, we show that (i) the coupling of endogenous and exogenous barriers can easily occur even when ecological selection is weak; (ii) when environmental heterogeneity is fine-grained, GEAs can emerge at incompatibility loci, but only locally, in places where habitats and gene pools are sufficiently intermingled to maintain linkage disequilibria between genetic incompatibilities, local-adaptation genes and neutral loci. Furthermore, the association between the locally adapted and intrinsically incompatible alleles (i.e. the sign of linkage disequilibrium between endogenous and exogenous loci) is arbitrary and can form in either direction. Reviewing results from the literature, we find that many predictions of our model are supported, including endogenous genetic barriers that coincide with environmental boundaries, local GEA in mosaic hybrid zones, and inverted or modified GEAs at distant locations. We argue that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst-outlying loci observed in genome scan approaches - even when these are correlated to environmental variables.  相似文献   

9.
Studies of the genetics of hybrid zones can provide insight into the genomic architecture of species boundaries. By examining patterns of introgression of multiple loci across a hybrid zone, it may be possible to identify regions of the genome that have experienced selection. Here, we present a comparison of introgression in two replicate transects through the house mouse hybrid zone through central Europe, using data from 41 single nucleotide markers. Using both genomic and geographic clines, we found many differences in patterns of introgression between the two transects, as well as some similarities. We found that many loci may have experienced the effects of selection at linked sites, including selection against hybrid genotypes, as well as positive selection in the form of genotypes introgressed into a foreign genetic background. We also found many positive associations of conspecific alleles among unlinked markers, which could be caused by epistatic interactions. Different patterns of introgression in the two transects highlight the challenge of using hybrid zones to identify genes underlying isolation and raise the possibility that the genetic basis of isolation between these species may be dependent on the local population genetic make-up or the local ecological setting.  相似文献   

10.
Chromosomal and Genic Barriers to Introgression in Helianthus   总被引:2,自引:0,他引:2       下载免费PDF全文
L. H. Rieseberg  C. R. Linder    G. J. Seiler 《Genetics》1995,141(3):1163-1171
The sexual transfer of genes between taxa possessing different structural karyotypes must involve the passage of genes through a chromosomal sterility barrier. Yet little is known about the effects of structural differences on gene introgression within or adjacent to the rearranged chromosomal fragments or about the patterns of introgression in collinear regions. Here, we employ 197 mapped molecular markers to study the effects of chromosomal structural differences on introgression in backcrossed progeny of the domesticated sunflower, Helianthus annuus, and its karyotypically divergent wild relative, H. petiolaris. Forty percent of the genome from the seven collinear linkages introgressed, whereas only 2.4% of the genome from the 10 rearranged linkages was transferred. Thus, chromosomal rearrangements appear to provide an effective mechanism for reducing or eliminating introgression in rearranged chromosomal segments. On the other hand, observations that 60% of the markers from within the collinear portion of the genome did not introgress suggests that genic factors also resist introgression in Helianthus. That is, selection against H. petiolaris genes in concert with linkage may have reduced or eliminated parts of the genome not protected by structural changes. Thus, barriers to introgression in Helianthus appear to include both chromosomal structural and genic factors.  相似文献   

11.
Coral reefs are highly diverse ecosystems, where numerous closely related species often coexist. How new species arise and are maintained in these high geneflow environments have been long‐standing conundrums. Hybridization and patterns of introgression between sympatric species provide a unique insight into the mechanisms of speciation and the maintenance of species boundaries. In this study, we investigate the extent of hybridization between two closely related species of coral reef fish: the common coral trout (Plectropomus leopardus) and the bar‐cheek coral trout (Plectropomus maculatus). Using a complementary set of 25 microsatellite loci, we distinguish pure genotype classes from first‐ and later‐generation hybrids, identifying 124 interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid‐shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary processes are acting to maintain species barriers. We elaborate on these finding to investigate the extent of genomic introgression and admixture from 2,271 SNP loci recovered from a ddRAD library of pure and hybrid individuals. An analysis of genomic clines on recovered loci indicates that 261 SNP loci deviate from a model of neutral introgression, of which 132 indicate a pattern of introgression consistent with selection favouring both hybrid and parental genotypes. Our findings indicate genome‐wide, bidirectional introgression between two sympatric species of coral reef fishes and provide further support to a growing body of evidence for the role of hybridization in the evolution of coral reef fishes.  相似文献   

12.
We studied differentiation and geneflow patterns between enantiomorphic door‐snail species in two hybrid zones in the Bucegi Mountains (Romania) to investigate the effects of intrinsic barriers (complications in copulation) and extrinsic selection by environmental factors. A mitochondrial gene tree confirmed the historical separation of the examined populations into the dextral Alopia livida and the sinistral Alopia straminicollis in accordance with the morphological classification, but also indicated gene flow between the species. By contrast, a network based on amplified fragment length polymorphisms (AFLP) markers revealed local groups of populations as units independent of their species affiliation. Admixture analyses based on AFLP data showed that the genomes of most individuals in the hybrid zones are composed of parts of the genomes of both parental taxa. The introgression patterns of a notable fraction of the examined markers deviated from neutral introgression. However, the patterns of most non‐neutral markers were not concordant between the two hybrid zones. There was also no concordance between non‐neutral markers in the two genomic clines and markers that were correlated with environmental variables or markers that were correlated with the proportion of dextral individuals in the populations. Neither extrinsic selection by environmental factors nor intrinsic barriers resulting from positive frequency‐dependent selection of the prevailing coiling direction were sufficient to maintain the distinctness of A. straminicollis and A. livida. Despite being historically separated units, we conclude that these taxa now merge where they come into contact.  相似文献   

13.
Marker transmission ratio distortion (TRD) in genetic mapping populations is frequently ascribed to selection against allelic combinations that cause hybrid incompatibility. Accordingly, genomic regions of TRD should be nonrandomly associated (colocated) with loci that underlie hybrid incompatibility. To directly test this hypothesis, we evaluated the genome-wide qualitative and quantitative agreement between chromosomal regions exhibiting marker TRD and those known to contain hybrid incompatibility quantitative trait locus (QTL). Incompatibility data came from a near-isogenic line (NIL) analysis of pollen and seed sterility in a cross between two Solanum (formerly Lycopersicon) species. We assessed (1) whether these incompatibility loci are colocated with markers that show significant TRD in two earlier generations preceding these introgression lines and (2) whether the magnitude of marker distortion quantitatively matches the estimated strength of selection against each incompatibility locus. We found evidence that TRD regions are chromosomally colocated with hybrid incompatibility loci more frequently than is expected by chance: pollen sterility QTLs were most closely associated with distorted heterozygote frequencies in later-generation backcrosses. Nonetheless, there was no evidence for an association between TRD and seed sterility and little evidence of a quantitative association between the magnitude of marker TRD and the fitness effects of heterospecific alleles at each chromosomal location. We propose and test a model (the "dance partner" model) to explain several cases where regions of TRD are not associated with hybrid incompatibility loci. Under this model, some NILs containing greater than one heterospecific introgression may not express hybrid incompatibility phenotypes because they carry both appropriate genetic dance partners required for a fully functional interaction. Accordingly, negative interactions expressed in earlier backcross generations are masked in these double-introgression NILs. Based on this model, we identify the location of several new putative pairwise interactors underlying hybrid incompatibility in this species cross.  相似文献   

14.
Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.  相似文献   

15.
Butlin RK 《Genetica》2010,138(4):409-418
The process of speciation begins with genomically-localised barriers to gene exchange associated with loci for local adaptation, intrinsic incompatibility or assortative mating. The barrier then spreads until reproductive isolation influences the whole genome. The population genomics approach can be used to identify regions of reduced gene flow by detecting loci with greater differentiation than expected from the average across many loci. Recently, this approach has been used in several systems. I review these studies, concentrating on the robustness of the approach and the methods available to go beyond the simple identification of differentiated markers. Population genomics has already contributed significantly to understanding the balance between gene flow and selection during the evolution of reproductive isolation and has great future potential both in genome species and in non-model organisms.  相似文献   

16.
Investigating secondary contact of historically isolated lineages can provide insight into how selection and drift influence genomic divergence and admixture. Here, we studied the genomic landscape of divergence and introgression following secondary contact between lineages of the Western Diamondback Rattlesnake (Crotalus atrox) to determine whether genomic regions under selection in allopatry also contribute to reproductive isolation during introgression. We used thousands of nuclear loci to study genomic differentiation between two lineages that have experienced recent secondary contact following isolation, and incorporated sampling from a zone of secondary contact to identify loci that are resistant to gene flow in hybrids. Comparisons of patterns of divergence and introgression revealed a positive relationship between allelic differentiation and resistance to introgression across the genome, and greater‐than‐expected overlap between genes linked to lineage‐specific divergence and loci that resist introgression. Genes linked to putatively selected markers were related to prominent aspects of rattlesnake biology that differ between populations of Western Diamondback rattlesnakes (i.e., venom and reproductive phenotypes). We also found evidence for selection against introgression of genes that may contribute to cytonuclear incompatibility, consistent with previously observed biased patterns of nuclear and mitochondrial alleles suggestive of partial reproductive isolation due to cytonuclear incompatibilities. Our results provide a genome‐scale perspective on the relationships between divergence and introgression in secondary contact that is relevant for understanding the roles of selection in maintaining partial isolation of lineages, causing admixing lineages to not completely homogenize.  相似文献   

17.
Comparative analysis of protein loci, microsatellite and mtDNA markers revealed generally comparable estimates for introgression and apparent admixture rates in stocked brown trout populations at two sites in the River Doubs (Rhône dainage, Switzerland), which are 10 km apart and which belong to the same management unit. At one site, a significant deviation between mtDNA and nuclear markers could be explained by stocking of F1 hybrids originating from crosses between hatchery females and males from the local population. Substantial differences between diagnostic protein loci and protein loci having non-fixed private alleles indicated that caution must be exercised when using genetic markers not strictly diagnostic for the distinction of the populations under investigation. Congruent estimates of introgression and apparent admixture rates between diagnostic protein loci and presumed diagnostic microsatellite loci suggest that the latter can be regarded as reliable genetic markers for the estimation of introgression in Mediterranean brown trout populations stocked with trout of Atlantic origin. Significant differences in introgression and apparent admixture rates between the two sites and between age-classes of one study site were observed. Introgression is suggested to depend on environmental factors. Significantly lower introgression rates in age-class 2+ years as compared to juvenile trout might further indicate that introduced Atlantic brown trout and hybrids decrease in proportion between age-classes 1+ and 2+ years.  相似文献   

18.
Barriers to gene flow between species result from selection against foreign linkage blocks in hybrids. When the geographic ranges of taxa meet at multiple locations, the opportunity exists for variation in the genetic architecture of isolating barriers. Hybrid zones between two sunflower species (Helianthus annuus and H. petiolaris) in Nebraska and California exhibited remarkably similar patterns of introgression of mapped molecular markers. Congruence among hybrid zones may result from limited intraspecific variation at loci contributing to isolation and from similar selective effects of alleles in the heterospecific genetic background. The observed consistency of introgression patterns across distantly separated hybrid zones suggests that intrinsic forces predominate in determining hybrid zone dynamics and boundaries between these sunflower species.  相似文献   

19.
Inherent incompatibilities between genetic components from genomes of different species may cause intrinsic reproductive isolation. In evolution experiments designed to instigate speciation in laboratory populations of the filamentous fungus Neurospora, we previously discovered a pair of incompatibility loci (dfe and dma) that interact negatively to cause severe defects in sexual reproduction. Here we show that the dfedma incompatibility also is a significant cause of genetic isolation between two naturally occurring species of Neurospora (N. crassa and N. intermedia). The strong incompatibility interaction has a simple genetic basis (two biallelic loci) and antagonistic epistasis occurs between heterospecific alleles only, consistent with the Dobzhansky–Muller model of genic incompatibility. We developed microarray‐based, restriction‐site associated DNA (RAD) markers that identified ~1500 polymorphisms between the genomes of the two species, and constructed the first interspecific physical map of Neurospora. With this new mapping resource, the approximate genomic locations of the incompatibility loci were determined using three different approaches: genome scanning, bulk‐segregant analyses, and introgression. These population, quantitative, and classical genetics methods concordantly identified two candidate regions, narrowing the search for each incompatibility locus to only ~2% of the nuclear genome. This study demonstrates how advances in high‐throughput, genome‐wide genotyping can be applied to mapping reproductive isolation genes and speciation research.  相似文献   

20.
Hybrid zones provide unprecedented opportunity for the study of the evolution of reproductive isolation, and the extent of hybridization across individuals and genomes can illuminate the degree of isolation. We examine patterns of interchromosomal linkage disequilibrium (ILD) and the presence of hybridization in Atlantic cod, Gadus morhua, in previously identified hybrid zones in the North Atlantic. Here, previously identified clinal loci were mapped to the cod genome with most (∼70%) occurring in or associated with (<5 kb) coding regions representing a diverse array of possible functions and pathways. Despite the observation that clinal loci were distributed across three linkage groups, elevated ILD was observed among all groups of clinal loci and strongest in comparisons involving a region of low recombination along linkage group 7. Evidence of ILD supports a hypothesis of divergence hitchhiking transitioning to genome hitchhiking consistent with reproductive isolation. This hypothesis is supported by Bayesian characterization of hybrid classes present and we find evidence of common F1 hybrids in several regions consistent with frequent interbreeding, yet little evidence of F2 or backcrossed individuals. This work suggests that significant barriers to hybridization and introgression exist among these co-occurring groups of cod either through strong selection against hybrid individuals, or genetic incompatibility and intrinsic barriers to hybridization. In either case, the presence of strong clinal trends, and little gene flow despite extensive hybridization supports a hypothesis of reproductive isolation and cryptic speciation in Atlantic cod. Further work is required to test the degree and nature of reproductive isolation in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号