首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconstitution, activities, and structure of the eukaryotic RNA exosome   总被引:4,自引:0,他引:4  
Liu Q  Greimann JC  Lima CD 《Cell》2006,127(6):1223-1237
The RNA exosome is a multisubunit 3' to 5' exoribonuclease complex that participates in degradation and processing of cellular RNA. To determine the activities and structure of the eukaryotic exosome, we report the reconstitution of 9-subunit exosomes from yeast and human and reconstitution of 10- and 11-subunit exosomes from yeast. Comparative biochemical analysis between purified subunits and reconstituted exosomes using AU-rich, polyadenylated (poly[A]), generic, and structured RNA substrates reveals processive phosphorolytic activities for human Rrp41/Rrp45 and the 9-subunit human exosome, processive hydrolytic activities for yeast Rrp44 and the yeast 10-subunit exosome, distributive hydrolytic activities for Rrp6, and processive and distributive hydrolytic activities for the yeast 11-subunit exosome. To elucidate the architecture of a eukaryotic exosome, its conserved surfaces, and the structural basis for RNA decay, we report the X-ray structure determination for the 286 kDa nine-subunit human exosome at 3.35 A.  相似文献   

2.
3.
Eukaryotic 3'-->5' exonucleolytic activities are essential for a wide variety of reactions of RNA maturation and metabolism, including processing of rRNA, small nuclear RNA, and small nucleolar RNA, and mRNA decay. Two related but distinct forms of a complex containing 10 3'-->5' exonucleases, the exosome, are found in yeast nucleus and cytoplasm, respectively, and related complexes exist in human cells. Here we report on the characterization of the AtRrp41p, an Arabidopsis thaliana homolog of the Saccharomyces cerevisiae exosome subunit Rrp41p (Ski6p). Purified recombinant AtRrp41p displays a processive phosphorolytic exonuclease activity and requires a single-stranded poly(A) tail on a substrate RNA as a "loading pad." The expression of the Arabidopsis RRP41 cDNA in yeast rescues the 5.8 S rRNA processing and 3'-->5' mRNA degradation defects of the yeast ski6-100 mutant. However, neither of these defects can explain the conditional lethal phenotype of the ski6-100 strain. Importantly, AtRrp41p shares additional function(s) with the yeast Rrp41p which are essential for cell viability because it also rescues the rrp41 (ski6) null mutant. AtRrp41p is found predominantly in a high molecular mass complex in Arabidopsis and in yeast cells, and it interacts in vitro with the yeast Rrp44p and Rrp4p exosome subunits, suggesting that it can participate in evolutionarily conserved interactions that could be essential for the integrity of the exosome complex.  相似文献   

4.
5.
6.
7.
The RNA exosome processes and degrades RNAs in archaeal and eukaryotic cells. Exosomes from yeast and humans contain two active exoribonuclease components, Rrp6p and Dis3p/Rrp44p. Rrp6p is concentrated in the nucleus and the dependence of its function on the nine-subunit core exosome and Dis3p remains unclear. We found that cells lacking Rrp6p accumulate poly(A)+ rRNA degradation intermediates distinct from those found in cells depleted of Dis3p, or the core exosome component Rrp43p. Depletion of Dis3p in the absence of Rrp6p causes a synergistic increase in the levels of degradation substrates common to the core exosome and Rrp6p, but has no effect on Rrp6p-specific substrates. Rrp6p lacking a portion of its C-terminal domain no longer co-purifies with the core exosome, but continues to carry out RNA 3′-end processing of 5.8S rRNA and snoRNAs, as well as the degradation of certain truncated Rrp6-specific rRNA intermediates. However, disruption of Rrp6p–core exosome interaction results in the inability of the cell to efficiently degrade certain poly(A)+ rRNA processing products that require the combined activities of Dis3p and Rrp6p. These findings indicate that Rrp6p may carry out some of its critical functions without physical association with the core exosome.  相似文献   

8.
9.
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.  相似文献   

10.
11.
12.
13.
The RNA exosome is an essential ribonuclease complex involved in RNA processing and decay. It consists of a 9-subunit catalytically inert ring composed of six RNase PH-like proteins forming a central channel and three cap subunits with KH/S1 domains located at the top. The yeast exosome catalytic activity is supplied by the Dis3 (also known as Rrp44) protein, which has both endo- and exoribonucleolytic activities and the nucleus-specific exonuclease Rrp6. In vitro studies suggest that substrates reach the Dis3 exonucleolytic active site following passage through the ring channel, but in vivo support is lacking. Here, we constructed an Rrp41 ring subunit mutant with a partially blocked channel that led to thermosensitivity and synthetic lethality with Rrp6 deletion. Rrp41 mutation caused accumulation of nuclear and cytoplasmic exosome substrates including the non-stop decay reporter, for which degradation is dependent on either endonucleolytic or exonucleolytic Dis3 activities. This suggests that the central channel also controls endonucleolytic activity. In vitro experiments performed using Chaetomium thermophilum exosomes reconstituted from recombinant subunits confirmed this notion. Finally, we analysed the impact of a lethal mutation of conserved basic residues in Rrp4 cap subunit and found that it inhibits digestion of single-stranded and structured RNA substrates.  相似文献   

14.
15.
The yeast exosome is a complex of 3' --> 5' exoribonucleases. Sequence analysis identified putative human homologues for exosome components, although several were found only as expressed sequence tags. Here we report the cloning of full-length cDNAs, which encode putative human homologues of the Rrp40p, Rrp41p, and Rrp46p components of the exosome. Recombinant proteins were expressed and used to raise rabbit antisera. In Western blotting experiments, these decorated HeLa cell proteins of the predicted sizes. All three human proteins were enriched in the HeLa cells nucleus and nucleolus, but were also clearly detected in the cytoplasm. Size exclusion chromatography revealed that hRrp40p, hRrp41p, and hRrp46p were present in a large complex. This cofractionated with the human homologues of other exosome components, hRrp4p and PM/Scl-100. Anti-PM/Scl-positive patient sera coimmunoprecipitated hRrp40p, hRrp41p, and hRrp46p demonstrating their physical association. The immunoprecipitated complex exhibited 3' --> 5' exoribonuclease activity in vitro. hRrp41p was expressed in yeast and shown to suppress the lethality of genetic depletion of yeast Rrp41p. We conclude that hRrp40p, hRrp41p, and hRrp46p represent novel components of the human exosome complex.  相似文献   

16.
17.
Non-coding RNAs (ncRNAs) play critical roles in gene regulation. In eukaryotic cells, ncRNAs are processed and/or degraded by the nuclear exosome, a ribonuclease complex containing catalytic subunits Dis3 and Rrp6. The TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex is a critical exosome cofactor in budding yeast that stimulates the exosome to process/degrade ncRNAs and human TRAMP components have recently been identified. Importantly, mutations in exosome and exosome cofactor genes cause neurodegenerative disease. How the TRAMP complex interacts with other exosome cofactors to orchestrate regulation of the exosome is an open question. To identify novel interactions of the TRAMP exosome cofactor, we performed a high copy suppressor screen of a thermosensitive air1/2 TRAMP mutant. Here, we report that the Nab3 RNA-binding protein of the Nrd1-Nab3-Sen1 (NNS) complex is a potent suppressor of TRAMP mutants. Unlike Nab3, Nrd1 and Sen1 do not suppress TRAMP mutants and Nrd1 binding is not required for Nab3-mediated suppression of TRAMP suggesting an independent role for Nab3. Critically, Nab3 decreases ncRNA levels in TRAMP mutants, Nab3-mediated suppression of air1/2 cells requires the nuclear exosome component, Rrp6, and Nab3 directly binds Rrp6. We extend this analysis to identify a human RNA binding protein, RALY, which shares identity with Nab3 and can suppress TRAMP mutants. These results suggest that Nab3 facilitates TRAMP function by recruiting Rrp6 to ncRNAs for processing/degradation independent of Nrd1. The data raise the intriguing possibility that Nab3 and Nrd1 can function independently to recruit Rrp6 to ncRNA targets, providing combinatorial flexibility in RNA processing.  相似文献   

18.
Nuclear RNA exosome is the main 3′→5′ RNA degradation and processing complex in eukaryotic cells and its dysregulation therefore impacts gene expression and viability. In this work we show that RNA exosome activity is necessary for maintaining cell wall stability in yeast Saccharomyces cerevisiae. While the essential RNA exosome catalytic subunit Dis3 provides exoribonuclease catalytic activity, the second catalytic subunit Rrp6 has a noncatalytic role in this process. RNA exosome cofactors Rrp47 and Air1/2 are also involved. RNA exosome mutants undergo osmoremedial cell lysis at high temperature or at physiological temperature upon treatment with cell wall stressors. Finally, we show that a defect in protein glycosylation is a major reason for cell wall instability of RNA exosome mutants. Genes encoding enzymes that act in the early steps of the protein glycosylation pathway are down-regulated at high temperature in cells lacking Rrp6 protein or Dis3 exoribonuclease activity and overexpression of the essential enzyme Psa1, that catalyzes synthesis of the mannosylation precursor, suppresses temperature sensitivity and aberrant morphology of these cells. Furthermore, this defect is connected to a temperature-dependent increase in accumulation of noncoding RNAs transcribed from loci of relevant glycosylation-related genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号