首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ELAV is a gene-specific regulator of alternative pre-mRNA processing in Drosophila neurons. Since ELAV/Hu proteins preferentially bind to AU-rich regions that are generally abundant in introns and untranslated regions, it has not been clear how gene specificity is achieved. Here we used a combination of in vitro biochemical experiments together with phylogenetic comparisons and in vivo analysis of Drosophila transgenes to study ELAV binding to the last ewg intron and splicing regulation. In vitro binding studies of ELAV show that ELAV multimerizes on the ewg binding site and forms a defined and saturable complex. Further, sizing of the ELAV-RNA complex and a series of titration experiments indicate that ELAV forms a dodecameric complex on 135 nucleotides in the last ewg intron. Analysis of the substrate RNA requirements for ELAV binding and complex formation indicates that a series of AU(4-6) motifs spread over the entire binding site are important, but not a strictly defined sequence element. The importance of AU(4-6) motifs, but not spacing between them, is further supported by evolutionary conservation in several melanogaster species subgroups. Finally, using transgenes we demonstrate in fly neurons that ELAV-mediated regulation of ewg intron 6 splicing requires several AU(4-6) motifs and that introduction of spacer sequence between conserved AU(4-6) motifs has a minimal effect on splicing. Collectively, our results suggest that ELAV multimerization and binding to multiple AU(4-6) motifs contribute to target RNA recognition and processing in a complex cellular environment.  相似文献   

2.
3.
4.
Neuronally coexpressed ELAV/Hu proteins comprise a family of highly related RNA binding proteins which bind to very similar cognate sequences. How this redundancy is linked to in vivo function and how gene-specific regulation is achieved have not been clear. Analysis of mutants in Drosophila ELAV/Hu family proteins ELAV, FNE, and RBP9 and of genetic interactions among them indicates that they have mostly independent roles in neuronal development and function but have converging roles in the regulation of synaptic plasticity. Conversely, ELAV, FNE, RBP9, and human HuR bind ELAV target RNA in vitro with similar affinities. Likewise, all can regulate alternative splicing of ELAV target genes in nonneuronal wing disc cells and substitute for ELAV in eye development upon artificially increased expression; they can also substantially restore ELAV''s biological functions when expressed under the control of the elav gene. Furthermore, ELAV-related Sex-lethal can regulate ELAV targets, and ELAV/Hu proteins can interfere with sexual differentiation. An ancient relationship to Sex-lethal is revealed by gonadal expression of RBP9, providing a maternal fail-safe for dosage compensation. Our results indicate that highly related ELAV/Hu RNA binding proteins select targets for mRNA processing through alteration of their expression levels and subcellular localization but only minimally by altered RNA binding specificity.  相似文献   

5.
Four micropia elements from Drosophila melanogaster and D. hydei have been analysed by sequencing. Two elements, from D. hydei, micropia-DhMiF8 and -DhMiF2, were recovered by cloning microdissected Y-chromosomal lampbrush loops "threads". This method allows isolation of repetitive sequences from defined chromosomal positions, but recovery of large and overlapping inserts is difficult. In case of the Y-chromosomal micropia elements it was not possible to define the endpoints of their long terminal repeat sequences precisely. Comparison of these locus-defined micropia elements to complete micropia elements isolated from D. melanogaster allowed identification of micropia-DhMiF8 and micropia-DhMiF2 long terminal repeats (LTRs). LTR sequences from the two Drosophila species are not conserved except for a few short sequences found at comparable positions that are believed to have functional significance. In contrast, the Leu-tRNA primer binding site and plus strand primer binding site are conserved between D. melanogaster and D. hydei.  相似文献   

6.
The product of the Drosophila embryonic lethal abnormal visual system is a conserved protein (ELAV) necessary for normal neuronal differentiation and maintenance. It possesses three RNA-binding domains and is involved in the regulation of RNA metabolism. The long elav 3′-untranslated region (3′-UTR) is necessary for autoregulation. We used RNA-binding assays and in vitro selection to identify the ELAV best binding site in the elav 3′-UTR. This site resembles ELAV-binding sites identified previously in heterologous targets, both for its nucleotide sequence and its significant affinity for ELAV (Kd 40 nM). This finding supports our model that elav autoregulation depends upon direct interaction between ELAV and elav RNA. We narrowed down the best binding site to a 20 nt long sequence A(U5)A(U3)G(U2)A(U6) in an alternative 3′ exon. We propose and test a model in which the regulated use of this alternative 3′ exon is involved in normal elav regulation. Found in NEurons (FNE), another neuronal RNA-binding protein paralogous to ELAV, also binds this site. These observations provide a molecular basis for the in vivo interactions reported previously between elav and fne.  相似文献   

7.
Regulatory sequences or factors involved in the regulation of target genes of Drosophila homeodomain proteins are largely unknown. Here, we identify sequence elements that are involved in the function of the fushi tarazu (ftz) autoregulatory element AE, a direct in vivo target of the homeodomain protein ftz. A systematic deletion analysis of AE in transgenic embryos defines multiple elements that are redundantly involved in enhancer activity. Sequences juxtaposed to ftz binding sites are not strictly required for enhancer function. Several sequence motifs are conserved in other developmentally regulated genes of Drosophila melanogaster and in the AE homologue of Drosophila virilis. The D. virilis AE is functional in D. melanogaster. The sequence motifs identified here are candidate elements contributing to the target specificity of the homeodomain protein ftz.  相似文献   

8.
Drosophila virilis genomic DNA corresponding to the D. melanogaster embryonic lethal abnormal visual system (elav) locus was cloned. DNA sequence analysis of a 3.8-kb genomic piece allowed identification of (i) an open reading frame (ORF) with striking homology to the previously identified D. melanogaster ORF and (ii) conserved sequence elements of possible regulatory relevance within and flanking the second intron. Conceptual translation of the D. virilis ORF predicts a 519-amino-acid-long ribonucleoprotein consensus sequence-type protein. Similar to D. melanogaster ELAV protein, it contains three tandem RNA-binding domains and an alanine/glutamine-rich amino-terminal region. The sequence throughout the RNA-binding domains, comprising the carboxy-terminal 346 amino acids, shows an extraordinary 100% identity at the amino acid level, indicating a strong structural constraint for this functional domain. The amino-terminal region is 36 amino acids longer in D. virilis, and the conservation is 66%. In in vivo functional tests, the D. virilis ORF was indistinguishable from the D. melanogaster ORF. Furthermore, a D. melanogaster ORF encoding an ELAV protein with a 40-amino-acid deletion within the alanine/glutamine-rich region was also able to supply elav function in vivo. Thus, the divergence of the amino-terminal region of the ELAV protein reflects lowered functional constraint rather than species-specific functional specification.  相似文献   

9.
10.
Lisbin MJ  Gordon M  Yannoni YM  White K 《Genetics》2000,155(4):1789-1798
Members of the ELAV family of proteins contain three RNA recognition motifs (RRMs), which are highly conserved. ELAV, a Drosophila melanogaster member of this family, provides a vital function and exhibits a predominantly nuclear localization. To investigate if the RNA-binding property of each of the ELAV RRMs is required for ELAV's in vivo function, amino acid residues critical in RNA binding for each RRM were individually mutated. A stringent genetic complementation test revealed that when the mutant protein was the sole source of ELAV, RNA-binding ability of each RRM was essential to ELAV function. To assess the degree to which each domain was specific for ELAV function and which domains perhaps performed a function common to related ELAV proteins, we substituted an ELAV RRM with the corresponding RRM from RBP9, the D. melanogaster protein most homologous to ELAV; HuD, a human ELAV family protein; and SXL, which, although evolutionarily related, is not an ELAV family member. This analysis revealed that RRM3 replacements were fully functional, but RRM1 and RRM2 replacements were largely nonfunctional. Under less stringent conditions RRM1 and RRM2 replacements from SXL and RRM1 replacement from RBP9 were able to provide supplemental function in the presence of a mutant hypomorphic ELAV protein.  相似文献   

11.
We cloned genomic DNA corresponding to the Drosophila virilis homologue of para, a gene encoding a sodium channel α-subunit, and obtained many partial cDNA clones from embryos and adults. Para protein has been well conserved, and the optional elements at six different sites of alternative splicing in D. melanogaster are present in D. virilis, in addition to one new optional exon. Among 31 different splice-types observed in D. virilis, the stage-specific pattern of alternative splicing seen in D. melanogaster is also conserved. Comparison of genomic DNA sequence revealed three aspects that vary between alternatively and constitutively used exon sequences. Sixteen short blocks (10-75 bp), the only recognizably conserved intron sequence, were disproportionately associated with alternatively used splice sites. Silent site substitutions were found much less frequently in alternative than constitutive exon elements, and the degree of match to the Drosophila splice site consensus tended to be lower at less frequently selected alternative splice junctions. This study shows that the developmentally regulated variability of para products is highly conserved and therefore likely to be of functional significance and suggests that a variety of different sequence-dependent mechanisms may regulate this pattern of alternative splicing.  相似文献   

12.
13.
S J Bray  J Hirsh 《The EMBO journal》1986,5(9):2305-2311
The dopa decarboxylase gene (Ddc) has been isolated from Drosophila virilis and introduced into the germ-line of Drosophila melanogaster by P-element mediated transformation. The integrated gene is induced at the correct stages during development with apparently normal tissue specificity, indicating that cis-acting elements required for regulation are functionally conserved between the two species. A comparison of the DNA sequences from the 5' flanking regions reveals a cluster of small (8-16 bp) conserved sequence elements within 150 bp upstream of the RNA startpoint, a region required for normal expression of the D. melanogaster Ddc gene.  相似文献   

14.
15.
H. M. Bomze  A. J. Lopez 《Genetics》1994,136(3):965-977
In Drosophila melanogaster, alternatively spliced mRNAs from the homeotic gene Ultrabithorax (Ubx) encode a family of structurally distinct homeoprotein isoforms. The developmentally regulated expression patterns of these isoforms suggest that they have specialized stage- and tissue-specific functions. To evaluate the functional importance of UBX isoform diversity and gain clues to the mechanism that regulates processing of Ubx RNAs, we have investigated whether the Ubx RNAs of other insects undergo similar alternative splicing. We have isolated and characterized Ubx cDNA fragments from D. melanogaster, Drosophila pseudoobscura, Drosophila hydei and Drosophila virilis, species separated by as much as 60 million years of evolution, and have found that three aspects of Ubx RNA processing have been conserved. (1) These four species exhibit identical patterns of optional exon use in a region adjacent to the homeodomain. (2) These four species produce the same family of UBX protein isoforms with identical amino acid sequences in the optional exons, even though the common amino-proximal region has undergone substantial divergence. The nucleotide sequences of the optional exons, including third positions of rare codons, have also been conserved strongly, suggesting functional constraints that are not limited to coding potential. (3) The tissue- and stage-specific patterns of expression of different UBX isoforms are identical among these Drosophila species, indicating that the developmental regulation of the alternative splicing events has also been conserved. These findings argue for an important role of alternative splicing in Ubx function. We discuss the implications of these results for models of UBX protein function and the mechanism of alternative splicing.  相似文献   

16.
The alcohol dehydrogenase (Adh) gene in the Hawaiian species of fruit fly, Drosophila affinidisjuncta, like the Adh genes from all Drosophila species analyzed, is expressed at high levels in the larval fat body via a larval-specific promoter. To identify the cis-acting elements involved in this highly conserved aspect of Adh gene expression, deleted D. affinidisjuncta genes were introduced into D. melanogaster by somatic transformation. Unlike previously described methods, this transformation system allows analysis of Adh gene expression specifically in the larval fat body. The arrangement of sequences influencing expression of the proximal promoter of this gene in the larval fat body differs markedly from that described for the Adh gene from the distant relative, D. melanogaster. Multiple redundant elements dispersed 5' and 3' to the gene, only some of which map to regions carrying evolutionarily conserved sequences, affect expression in the fat body. D. affinidisjuncta employs a novel mode of Adh gene regulation in which the proximal promoter is influenced by sequences having roles in expression of the distal promoter. This gene is also unique in that far upstream sequences can compensate for loss of sequences within 200 bp of the proximal RNA start site. Furthermore, expression is influenced in an unusual, context-dependent manner by a naturally-occurring 3' duplication of the proximal promoter--a feature found only in Hawaiian species.  相似文献   

17.
18.
19.
Evolution of the glucose dehydrogenase gene in Drosophila   总被引:5,自引:0,他引:5  
The glucose dehydrogenase genes (Gld) of Drosophila melanogaster, of D. pseudoobscura, and of D. virilis have been isolated and compared with each other in order to identify conserved and divergent aspects of their structure and expression. The exon/intron structure of Gld is conserved. The Gld mRNAs are similar, with a range of 2.6-2.8 kb among the three species. All three species exhibit peaks of Gld expression during every major developmental stage, although considerable variation in the precise timing of these peaks exists between species. Interspecific gene transfer experiments demonstrate that the regulation and function of the D. pseudoobscura Gld is similar enough to the homologous gene in D. melanogaster to substitute for its essential role in the eclosion process. Comparison of the putative promoter sequences has identified both shared and divergent sequence elements which are likely responsible, respectively, for the conserved and divergent patterns of expression observed. The entire coding sequences of the pseudoobscura and melanogaster Gld genes are presented and shown to encode a 612-amino-acid pre-protein. The inferred amino acid sequences are 92% conserved between the two species. In general the intronic regions of Gld are unusually well conserved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号