首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
An exopolysaccharide (EPS) producing strain, ZW3, was isolated from Tibet kefir grain and was identified as Lactobacillus kefiranofaciens. FT-IR spectroscopy revealed the presence of carboxyl, hydroxyl, and amide groups, which correspond to a typical heteropolymeric polysaccharide. The GC analysis of ZW3 EPS revealed that it was glucogalactan in nature. Exopolymer showed similar flocculation stability like xanthan gum but better than guar gum with a melting point of 93.38 degrees C which is lower than xanthan gum (153.4 degrees C) and guar gum (490.11 degrees C). Compared with other commercially available hydrocolloids like xanthan gum, guar gum and locust gum ZW3 EPS showed much better emulsifying capability.  相似文献   

2.
Probiotics and Antimicrobial Proteins - This study evaluated the distribution and colonization of Lactobacillus kefiranofaciens ZW3 and determined its capacity to modulate the gut microbiota in an...  相似文献   

3.
The characteristics of 58 strains of Lactobacillus spp. isolated from kefir were studied. These strains were tested for adherence to human enterocyte-like Caco-2 cells, resistance to acidic pH and bile acid, antimicrobial activities against enteropathogenic bacteria and inhibition of Salmonella typhimurium attachment to Caco-2 cells. The best probiotic properties were observed in L. acidophilus CYC 10051 and L. kefiranofaciens CYC 10058. L. kefiranofaciens CYC 10058 produced an exopolysaccharide, which revealed that it was closely related to kefiran, a polysaccharide with antitumoral properties. This is the first in vitro study about the antimicrobial characteristics of the Lactobacillus population of kefir.  相似文献   

4.
【目的】马奶酒样乳杆菌ZW3含有一段长度为14.4 kb的胞外多糖合成基因簇,包含17个与胞外多糖合成相关的基因(WANG_1283?WANG_1299),主要分析17个基因在马奶酒样乳杆菌ZW3生长过程中不同时间段的表达量,探究其中一个表达量发生变化的基因对乳酸菌产胞外多糖的影响。【方法】通过半定量RT-PCR实验,对基因簇上各基因的表达量进行分析;通过构建含有表达量变化基因的重组乳酸乳球菌,比较重组菌与野生菌的产胞外多糖差异。【结果】经分析,WANG_1284、WANG_1286、WANG_1287、WANG_1288、WANG_1290、WANG_1291、WANG_1292、WANG_1294、WANG_1296、WANG_1297、WANG_1298、WANG_1299这12个基因在菌体生长的50 h和60 h (产糖量上升阶段)表达量最高,推测这些基因在多糖聚合过程中起作用。从这12个基因中选出一个表达量发生明显变化的基因WANG_1291做进一步研究。将WANG_1291插入乳酸菌表达载体pMG36e中,构建了重组表达载体pMG36e-1291。将构建的重组表达载体转化到乳酸乳球菌WH-C1中,得到重组菌株。测定重组菌与野生菌生长特性,发现重组菌与野生菌之间的生长速度存在一定差异。然后利用苯酚-硫酸法测得重组乳酸乳球菌的胞外多糖产量是野生菌的2.1倍,胞外多糖产量有了明显的提高。【结论】确定WANG_1291基因是调控马奶酒样乳杆菌ZW3产胞外多糖的关键基因之一。  相似文献   

5.
The lactic acid bacteria of kefir were isolated and characterized using phenotypical, biochemical, and genotypical methods. Polyphasic analyses of results permitted the identification of the microflora to the strain level. The genus Lactobacillus was represented by the species Lb. kefir and Lb. kefiranofaciens. Both subspecies of Lactococcus lactis (lactis and cremoris) were isolated. Leuconostoc mesenteroides subsp. cremoris was also found. The kefir studied contained few species of lactic acid bacteria but showed a high number of different strains. We found that the polyphasic analysis approach increases the confidence in strain determination. It helped confirm strain groupings and it showed that it could have an impact on the phylogeny of the strains.  相似文献   

6.
To evaluate the feasibility of producing kefiran industrially, whey lactose, a by-product from dairy industry, was used as a low cost carbon source. Because the accumulation of lactic acid as a by-product of Lactobacillus kefiranofaciens inhibited cell growth and kefiran production, the kefir grain derived and non-derived yeasts were screened for their abilities to reduce lactic acid and promote kefiran production in a mixed culture. Six species of yeasts were examined: Torulaspora delbrueckii IFO 1626; Saccharomyces cerevisiae IFO 0216; Debaryomyces hansenii TISTR 5155; Saccharomyces exiguus TISTR 5081; Zygosaccharomyces rouxii TISTR 5044; and Saccharomyces carlsbergensis TISTR 5018. The mixed culture of L. kefiranofaciens with S. cerevisiae IFO 0216 enhanced the kefiran production best from 568 mg/L in the pure culture up to 807 and 938 mg/L in the mixed cultures under anaerobic and microaerobic conditions, respectively. The optimal conditions for kefiran production by the mixed culture were: whey lactose 4%; yeast extract 4%; initial pH of 5.5; and initial amounts of L. kefiranofaciens and S. cerevisiae IFO 0216 of 2.1×10(7) and 4.0×10(6)CFU/mL, respectively. Scaling up the mixed culture in a 2L bioreactor with dissolved oxygen control at 5% and pH control at 5.5 gave the maximum kefiran production of 2,580 mg/L in batch culture and 3,250 mg/L in fed-batch culture.  相似文献   

7.
The accessory polymer of the capsular polysaccharide of a 'kefiran'-producing Lactobacillus kefiranofaciens was studied. The teichoic acid of L. kefiranofaciens K1 was extracted from the cell with 5% trichloroacetic acid (w v) at 5°C for 24 h and was purified by ion-exchange chromatography on DEAE-Toyopearl 650 M with a linear gradient of (NH4)2CO3; the yield was only 2%. The teichoic acid has a molecular weight of 22000 and is composed of D-glucose, 2-acetamide-2-deoxy-D-glucose, glycerol and phosphorus in a molar ratio of 1.0 : 2.0 : 2.3 : 1.1. The low yield of teichoic acid suggested that kefiran is the main accessory polymer in the cell-wall of L. kefiranofaciens.  相似文献   

8.
Lactobacillus kefiranofaciens was reported to produce an exopolysaccharide named kefiran. In the present study, we developed a new medium, rice hydrolyzate (RH) medium, for the culture of L. kefiranofaciens. Structural analyses revealed that the exopolysaccharide produced by L. kefiranofaciens from RH medium was composed of a hexasaccharide repeating unit, and essentially identical to the kefiran reported in previous studies. A study on the effects of kefiran in animals demonstrated that kefiran significantly suppressed increase of blood pressure and reduced the serum cholesterol levels in SHRSP/Hos rats when subjects consumed excessive dietary cholesterol. Kefiran supplementation demonstrated the ability to significantly lower blood glucose in KKAy mice. In addition, the administration of kefiran in constipated SD rats caused an obvious improvement in the levels of fecal moisture and wet weights of feces. These results suggest that kefiran could be used as a functional food to prevent some commonly occurring diseases.  相似文献   

9.
AIMS: To compare microbiological safety of yogurt, kefir and different combinations of yogurt and kefir samples by using three foodborne pathogenic strains (Escherichia coli O157:H7, Listeria monocytogenes 4b and Yersinia enterocolitica O3) as indicators. METHODS AND RESULTS: Fresh yogurt and kefir drinks were added to pasteurized milk at a 5% rate either separately or together, and then incubated at different temperatures (43 degrees C for yogurt and 30 degrees C for kefir), depending on appropriate growth temperature of their starter microflora. While traditional yogurt was found to be the least suppressive on the three pathogenic micro-organisms, samples obtained from two subsequent fermentation process (samples fermented at 43 degrees C for 3 h and at 30 degrees C for 21 h) were more suppressive than that of traditional kefir. There was no significant survival difference between E. coli O157:H7 and L. monocytogenes 4b in samples tested (P > 0.05), but Y. enterocolitica O3 was more susceptible than other two test strains (P < 0.05). CONCLUSIONS: The microbiological safety of the dairy product fermented at two consecutive periods was superior than that of traditional yogurt or kefir alone. SIGNIFICANCE AND IMPACT OF THE STUDY: These experiments may mimic what happens when yogurt and kefir starter micro-organisms are combined in a milk fermentation process with different time and temperature periods.  相似文献   

10.
We used multiple approaches to investigate the role of Rab6 relative to Zeste White 10 (ZW10), a mitotic checkpoint protein implicated in Golgi/endoplasmic reticulum (ER) trafficking/transport, and conserved oligomeric Golgi (COG) complex, a putative tether in retrograde, intra-Golgi trafficking. ZW10 depletion resulted in a central, disconnected cluster of Golgi elements and inhibition of ERGIC53 and Golgi enzyme recycling to ER. Small interfering RNA (siRNA) against RINT-1, a protein linker between ZW10 and the ER soluble N-ethylmaleimide-sensitive factor attachment protein receptor, syntaxin 18, produced similar Golgi disruption. COG3 depletion fragmented the Golgi and produced vesicles; vesicle formation was unaffected by codepletion of ZW10 along with COG, suggesting ZW10 and COG act separately. Rab6 depletion did not significantly affect Golgi ribbon organization. Epistatic depletion of Rab6 inhibited the Golgi-disruptive effects of ZW10/RINT-1 siRNA or COG inactivation by siRNA or antibodies. Dominant-negative expression of guanosine diphosphate-Rab6 suppressed ZW10 knockdown induced-Golgi disruption. No cross-talk was observed between Rab6 and endosomal Rab5, and Rab6 depletion failed to suppress p115 (anterograde tether) knockdown-induced Golgi disruption. Dominant-negative expression of a C-terminal fragment of Bicaudal D, a linker between Rab6 and dynactin/dynein, suppressed ZW10, but not COG, knockdown-induced Golgi disruption. We conclude that Rab6 regulates distinct Golgi trafficking pathways involving two separate protein complexes: ZW10/RINT-1 and COG.  相似文献   

11.
ZW10 participates in the termination of the spindle checkpoint during mitosis by interacting with dynamitin, a subunit of the dynein accessory complex dynactin. We previously showed that ZW10 is attached to the endoplasmic reticulum through RINT-1 in interphase HeLa cells and involved in membrane transport between the endoplasmic reticulum and Golgi. Although a recent study demonstrated that ZW10 is localized in the Golgi in COS7 cells, the mechanism that regulates ZW10 localization remains unknown. In this study we showed a correlation between the Golgi localization of ZW10 and the centrosomal accumulation of dynactin. The amounts of ZW10 associated with dynactin were larger in cells where ZW10 was present in the Golgi than those where ZW10 was not in the Golgi. The targeting of ZW10 to the perinuclear Golgi region was found to depend on the perinuclear accumulation of dynactin, suggesting that dynactin regulates ZW10 localization.  相似文献   

12.
Kefir is a beverage produced by lactic-alcoholic fermentation of milk using kefir grain. For the first time in Iran, the microbial flora of kefir grain was isolated and identified (Motaghi et al. 1997). In this paper various ratios of starter cultures of kefir grains were investigated. Various ratios of lactic acid bacteria, yeasts and acetic acid bacteria were tested and the quality (colour, smell, flavour, acidity, effervescence and viscosity) of the product was assessed. At constant incubation time and temperature (24 h, 25 °C using homogenised milk with 2.5% fat), samples with various ratios of starter culture (3–5% w/v) were examined and analysed for protein, fat, sugar, alcohol, carbon dioxide, acidity, density, and riboflavin content. Samples produced with 3% (v/v) bacterial mixed culture and 2% (v/v) yeast (K3 procedure) culture were considered as best with respect to quality and organoleptic quality. The comparison of the results with the organoleptic tests of previous studies showed that the kefir produced with kefir grain is more desirable as compared with kefir produced with starter cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Zeste white 10 (ZW10) is a mitotic checkpoint protein and the anchor for cytoplasmic dynein at mitotic kinetochores, though it is expressed throughout the cell cycle. We find that ZW10 localizes to pericentriolar membranous structures during interphase and cosediments with Golgi membranes. Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) caused Golgi dispersal. ZW10 RNAi also dispersed endosomes and lysosomes. Live imaging of Golgi, endosomal, and lysosomal markers after reduced ZW10 expression showed a specific decrease in the frequency of minus end-directed movements. Golgi membrane-associated dynein was markedly decreased, suggesting a role for ZW10 in dynein cargo binding during interphase. We also find ZW10 enriched at the leading edge of migrating fibroblasts, suggesting that ZW10 serves as a general regulator of dynein function throughout the cell cycle.  相似文献   

14.
Donkey milk and donkey milk kefir exhibit antiproliferative, antimutagenic and antibacterial effects. We investigated the effects of donkey milk and donkey milk kefir on oxidative stress, apoptosis and proliferation in Ehrlich ascites carcinoma (EAC) in mice. Thirty-four adult male Swiss albino mice were divided into four groups as follows: group 1, administered 0.5 ml water; group 2, administered 0.5 ml water + EAC cells; group 3, administered 0.5 ml donkey milk + EAC cells; group 4, administered 0.5 ml donkey milk kefir + EAC cells. We introduced 2.5 x 106 EAC cells into each animal by subcutaneous injection. Tap water, donkey milk and donkey milk kefir were administered by gavage for 10 days. Animals were sacrificed on day 11. After measuring the short and long diameters of the tumors, tissues were processed for histology. To determine oxidative stress, cell death and proliferation iNOS and eNOS, active caspase-3 and proliferating cell nuclear antigen were assessed using immunohistochemistry. A TUNEL assay also was used to detect apoptosis. Tumor volume decreased in the donkey milk kefir group compared to the control and donkey milk groups. Tumor volume increased in the donkey milk group compared to the control group. Proliferating cell nuclear antigen levels were higher in the donkey milk kefir group compared to the control and donkey milk groups. The number of apoptotic cells was less in the donkey milk group, compared to the control, whereas it was highest in the donkey milk kefir group. Donkey milk administration increased eNOS levels and decreased iNOS levels, compared to the control group. In the donkey milk kefir group, iNOS levels were significantly lower than those of the control and donkey milk groups, while eNOS levels were similar to the control group. Donkey milk kefir induced apoptosis, suppressed proliferation and decreased co-expression of iNOS and eNOS. Donkey milk promoted development of the tumors. Therefore, donkey milk kefir appears to be more beneficial for treating breast cancer than donkey milk.  相似文献   

15.
The association of kefir microbiota was observed by electron microscopic examination. Scanning electron microscopic (SEM) observations revealed that kefir grain surface is very rough and the inner portions had scattered irregular holes on its surface. The interior of the grain comprised fibrillar materials which were interpreted as protein, lipid and a soluble polysaccharide, the kefiran complex that surrounds yeast and bacteria in the grain. Yeast was observed more clearly than bacteria on the outer portion of the grain. Transmission electron microscopic (TEM) observations of kefir revealed that the grain comprised a mixed culture of yeast and bacteria growing in close association with each other. Microbiota is dominated by budded and long-flattened yeast cells growing together with lactobacilli and lactococci bacteria. Bacterial cells with rounded ends were also observed in this mixed culture. Kefir grains, kefir suspensions, and kefiran were tested for antimicrobial activities against several bacterial and fungal species. The highest activity was obtained against Streptococcus faecalis KR6 and Fusarium graminearum CZ1. Growth of Aspergillus flavus AH3 producing for aflatoxin B1 for 10 days in broth medium supplemented with varying concentrations of kefir filtrate (%, v/v) showed that sporulation was completely inhibited at the higher concentrations of kefir filtrate (7–10%, v/v). The average values of both mycelial dry weights and aflatoxin B1 were completely inhibited at 10% (v/v). This is the first in vitro study about the antifungal characteristics of kefir against filamentous fungi which was manifested by applying its inhibitory effect on the productivity of aflatoxin B1 by A. flavus AH3.  相似文献   

16.
目的观察新疆传统发酵乳品中分离的14种菌株的生长特点及产酸能力,筛选出具有较强耐胆盐能力,并能在人工胃肠液中存活的菌株。方法对10株乳酸菌和4株酵母菌进行生长曲线、pH、耐胆盐能力和耐人工胃肠液检测。结果 10株乳酸菌和4株酵母菌具有良好的生长曲线和产酸能力;马乳酒样乳杆菌具有较强的耐胆盐能力;希氏乳杆菌、马乳酒样乳杆菌、乙醇假丝酵母和东方伊萨酵母具有较强的耐人工胃液能力;乳酸乳球菌、哈尔滨乳杆菌、瑞士乳杆菌、马乳酒样乳杆菌、乙醇假丝酵母和东方伊萨酵母具有较强的耐人工肠液能力。结论 10株乳酸菌和4株酵母菌具有优良的益生特性,有望成为益生菌制剂的备用菌株。  相似文献   

17.
Lacticin 3147 is a two-peptide broad spectrum lantibiotic produced by Lactococcus lactis DPC3147 shown to inhibit a number of clinically relevant Gram-positive pathogens. Initially isolated from an Irish kefir grain, lacticin 3147 is one of the most extensively studied lantibiotics to date. In this study, the bacterial diversity of the Irish kefir grain from which L. lactis DPC3147 was originally isolated was for the first time investigated using a high-throughput parallel sequencing strategy. A total of 17 416 unique V4 variable regions of the 16S rRNA gene were analysed from both the kefir starter grain and its derivative kefir-fermented milk. Firmicutes (which includes the lactic acid bacteria) was the dominant phylum accounting for > 92% of sequences. Within the Firmicutes, dramatic differences in abundance were observed when the starter grain and kefir milk fermentate were compared. The kefir grain-associated bacterial community was largely composed of the Lactobacillaceae family while Streptococcaceae (primarily Lactococcus spp.) was the dominant family within the kefir milk fermentate. Sequencing data confirmed previous findings that the microbiota of kefir milk and the starter grain are quite different while at the same time, establishing that the microbial diversity of the starter grain is not uniform with a greater level of diversity associated with the interior kefir starter grain compared with the exterior.  相似文献   

18.
In a batch mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae, which could assimilate lactic acid, cell growth and kefiran production rates of L. kefiranofaciens significantly increased, compared with those in pure cultures. The kefiran production rate was 36 mg l(-1) h(-1) in the mixed culture under the anaerobic condition, which was greater than that in the pure culture (24 mg l(-1) h(-1)). Under the aerobic condition, a more intensive interaction between these two strains was observed and higher kefiran production rate (44 mg l(-1) h(-1)) was obtained compared with that under the anaerobic condition. Kefiran production was further enhanced by an addition of fresh medium in the fed-batch mixed culture. In the fed-batch mixed culture, a final kefiran concentration of 5.41 g l(-1) was achieved at 87 h, thereby attaining the highest productivity at 62 mg l(-1) h(-1). Simulation study considered the reduction of lactic acid in pure culture was performed to estimate the additional effect of coculture with S. cerevisiae. Slightly higher cell growth and kefiran production rates in the mixed culture than those expected from pure culture by simulation were observed. These results suggest that coculture of L. kefiranofaciens and S. cerevisiae not only reduces the lactic acid concentration by consumption but also stimulates cell growth and kefiran production of L. kefiranofaciens.  相似文献   

19.
Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product.  相似文献   

20.
The mitotic checkpoint ensures that chromosomes are divided equally between daughter cells and is a primary mechanism preventing the chromosome instability often seen in aneuploid human tumors. ZW10 and Rod play an essential role in this checkpoint. We show that in mitotic human cells ZW10 resides in a complex with Rod and Zwilch, whereas another ZW10 partner, Zwint-1, is part of a separate complex of structural kinetochore components including Mis12 and Ndc80-Hec1. Zwint-1 is critical for recruiting ZW10 to unattached kinetochores. Depletion from human cells or Xenopus egg extracts is used to demonstrate that the ZW10 complex is essential for stable binding of a Mad1-Mad2 complex to unattached kinetochores. Thus, ZW10 functions as a linker between the core structural elements of the outer kinetochore and components that catalyze generation of the mitotic checkpoint-derived "stop anaphase" inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号