首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Techniques of individual cell selection and precise ultramicrotomy have been employed to demonstrate that the contractile ring of cleaving HeLa cells is a transitory cytoplasmic organelle of distinctive fine structure and location. The contractile ring is an uninterrupted annulus encircling the equator of dividing cells exactly where the cleavage furrow forms. It is about 10 microns wide, up to 0.2 microns in thickness, and is composed exclusively of circumferentially aligned thin filaments 40–70 Å in diameter. Contractile ring filaments appear to be associated with the overlying plasma membrane.Controlled experiments with a mold metabolite (cytochalasin B) reveals that within a few minutes the drug abolishes the ability of HeLa cells to undergo cytokinesis. Cytochalasin B seems to decompose the contractile ring. It has no other clearly identifiable effects on other cell structures, notably the mitotic apparatus. Cytochalasin B is the only drug known which selectively inhibits cytokinesis in animal cells.In conclusion, the contractile ring is the most likely organelle responsible for cytokinesis in HeLa cells. Similar organelles probably occur in all cleaving animal cells. Successful cleavage depends upon the structural and functional integrity of the contractile ring.  相似文献   

2.
Regulation of cardiac contractile proteins by phosphorylation   总被引:4,自引:0,他引:4  
Several of the contractile proteins of the heart can be phosphorylated, but in studies with isolated proteins only phosphorylation of the inhibitory subunit of troponin (TnI) produces a major change in the properties of the contractile system. As TnI is phosphorylated, the concentration of calcium required for activation of contraction is increased. Phosphorylation of the tropomyosin-binding subunit of troponin (TnT) or of the light chain of myosin fails to change ATPase activity of the isolated protein system. Phosphorylation of TnI is stimulated by the beta-adrenergic system and inhibited by the cholinergic system. Maximum calcium-activated force produced by the contractile system can be increased in hyperpermeable cardiac cells by cyclic AmP (cAMP) or agents that stimulate cAMP synthesis. This change in the contractile system, which appears to be part of the physiological response to beta-adrenergic stimulation, is mediated by phosphorylation of an intermediate that then modifies the contractile system. Phosphorylation of the contractile proteins is not involved.  相似文献   

3.
It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.  相似文献   

4.
《The Journal of cell biology》1990,111(6):2463-2473
Confocal laser scanning microscopy of isolated and antibody-labeled avian gizzard smooth muscle cells has revealed the global organization of the contractile and cytoskeletal elements. The cytoskeleton, marked by antibodies to desmin and filamin is composed of a mainly longitudinal, meandering and branched system of fibrils that contrasts with the plait-like, interdigitating arrangement of linear fibrils of the contractile apparatus, labeled with antibodies to myosin and tropomyosin. Although desmin and filamin were colocalized in the body of the cell, filamin antibodies labeled additionally the vinculin- containing surface plaques. In confocal optical sections the contractile fibrils showed a continuous label for myosin for at least 5 microns along their length: there was no obvious or regular interruption of label as might be expected for registered myosin filaments. The cytoplasmic dense bodies, labeled with antibodies to alpha-actinin exhibited a regular, diagonal arrangement in both extended cells and in cells shortened in solution to one-fifth of their extended length: after the same shortening, the fibrils of the cytoskeleton that showed colocalization with the dense bodies in extended cells became crumpled and disordered. It is concluded that the dense bodies serve as coupling elements between the cytoskeletal and contractile systems. After extraction with Triton X-100, isolated cells bound so firmly to a glass substrate that they were unable to shorten as a whole when exposed to exogenous Mg ATP. Instead, they contracted internally, producing integral of 10 regularly spaced contraction nodes along their length. On the basis of differences of actin distribution two types of nodes could be distinguished: actin-positive nodes, in which actin straddled the node, and actin-negative nodes, characterized by an actin-free center flanked by actin fringes of 4.5 microns minimum length on either side. Myosin was concentrated in the center of the node in both cases. The differences in node morphology could be correlated with different degrees of coupling of the contractile with the cytoskeletal elements, effected by a preparation-dependent variability of proteolysis of the cells. The nodes were shown to be closely related to the supercontracted cell fragments shown in the accompanying paper (Small et al., 1990) and furnished further evidence for long actin filaments in smooth muscle. Further, the segmentation of the contractile elements pointed to a hierarchial organization of the myofilaments governed by as yet undetected elements.  相似文献   

5.
Mepacrine is a potent inhibitor of uterine contractile responses in vitro. Pretreatment of isolated rat uterine horns with mepacrine (1.3 X 10(-4)M) for periods of time ranging from 15 s to 5 min prior to the addition of carbachol (1.0 X 10(-4)M) showed that mepacrine could significantly reduce carbachol-induced uterine contractile responses within 15 s of exposure. The maximal inhibitory effects of mepacrine on uterine contractile responses were observed within 2 min of mepacrine treatment. A dose-response study related to the effect of increasing concentrations of mepacrine (7.5 X 10(-6) to 1.3 X 10(-4)M) on carbachol-induced (1 X 10(-4)M) uterine contractions revealed that a dose of 3.1 X 10(-5)M mepacrine reduced the carbachol-induced contraction by 50%. A dose of 7.8 X 10(-5)M mepacrine produced the maximal inhibitory effect on the carbachol-induced uterine contractions. Two doses of mepacrine (3.1 X 10(-5) and 1.3 X 10(-4)M) significantly reduced maximal contractile responses and shifted contractile dose-response curves of carbachol, oxytocin, prostaglandin F2 alpha, and BaCl2 to the right. Based on the nonselective inhibition by mepacrine of contractile responses induced by different uterotonic agents, these results suggest that mepacrine cannot be used to characterize the role of phospholipase in regulating the actions of hormones in uterine tissue.  相似文献   

6.
Contractile actomyosin bundles are critical for numerous aspects of muscle and nonmuscle cell physiology. Due to the varying composition and structure of actomyosin bundles in vivo, the minimal requirements for their contraction remain unclear. Here, we demonstrate that actin filaments and filaments of smooth muscle myosin motors can self-assemble into bundles with contractile elements that efficiently transmit actomyosin forces to cellular length scales. The contractile and force-generating potential of these minimal actomyosin bundles is sharply sensitive to the myosin density. Above a critical myosin density, these bundles are contractile and generate large tensile forces. Below this threshold, insufficient cross-linking of F-actin by myosin thick filaments prevents efficient force transmission and can result in rapid bundle disintegration. For contractile bundles, the rate of contraction decreases as forces build and stalls under loads of ∼0.5 nN. The dependence of contraction speed and stall force on bundle length is consistent with bundle contraction occurring by several contractile elements connected in series. Thus, contraction in reconstituted actomyosin bundles captures essential biophysical characteristics of myofibrils while lacking numerous molecular constituents and structural signatures of sarcomeres. These results provide insight into nonsarcomeric mechanisms of actomyosin contraction found in smooth muscle and nonmuscle cells.  相似文献   

7.
The fission yeast Schizosaccharomyces pombe provides a genetic model system for the study of cytokinesis. As in many eukaryotes, cell division in the fission yeast requires an actin-myosin-based contractile ring. Numerous components of the contractile ring that function in ring assembly, positioning and contraction have been characterized. Many of these proteins are evolutionarily conserved, suggesting that common molecular mechanisms may govern aspects of eukaryotic cell division. Recent advances in the assembly and placement of the contractile ring are discussed. In particular, major findings have been made in the characterization of myosins in cytokinesis, and in how the cell division site may be positioned by the nucleus.  相似文献   

8.
Cell locomotion is a result of a series of synchronized chemo-mechanical processes. Crawling-type cell locomotion consists of three steps: protrusion, translocation, and retraction. Previous works have shown that both protrusion and retraction can produce cell movement. For the latter, a cell derives its propulsive force from retraction induced protrusion mechanism, which was experimentally verified by Chen (1979, "Induction of Spreading During Fibroblast Movement," J. Cell Biol., 81, pp. 684-691). In this paper, using finite element method, we take a computational biomimetic approach to study cell crawling assisted by contractile stress induced de-adhesion at the rear of the focal adhesion zone (FAZ). We assume the formation of the FAZ is driven by receptor-ligand bonds and nonspecific interactions. The contractile stress is generated due to the molecular activation of the intracellular actin-myosin machinery. The exerted contractile stress and its time dependency are modeled in a phenomenological manner as a two-spring mechanosensor proposed by Schwarz (2006, "Focal Adhesions as Mechanosensors: The Two-Spring Model," BioSystems, 83(2-3), pp. 225-232). Through coupling the kinetics of receptor-ligand bonds with contractile stress, de-adhesion can be achieved when the stall value of the contractile stress is larger than a critical one. De-adhesion at the rear end of the FAZ causes a redistribution of elastic energy and induces cell locomotion. Parametric studies were conducted to investigate the connection between the cell locomotion speed and stall stress, and receptor-ligand kinetics. Finally, we provide a scaling relationship that can be used to estimate the cell locomotion speed.  相似文献   

9.
A. H. Halevy 《Planta》1986,167(1):94-100
The number of contractile roots formed in gladioli was inversely related to the depth of the planted corm. Below a certain depth, no contractile roots were produced. Large corms did not produce contractile roots at any planting depth but produced two or more small corms. Depth perception is a function of two independent mechanisms, namely, temperature fluctuations in the root-initiation zone and the amount of light perceived mainly by the upper sheath leaf, the length of which varies with planting depth. Various growth substances applied to the leaves or corms did not induce contractile roots in dark-grown plants but roots were induced by indole-3-butyric acid in both small and large corms grown at constant temperatures and light. Abscisic acid retarded the formation of contractile roots under inductive conditions.Abbreviations CR contractile root(s) - IBA indole-3-butyric acid  相似文献   

10.
RhoA/rho-associated kinase mediates fibroblast contractile force generation   总被引:4,自引:0,他引:4  
The intracellular signals governing contractile force generation by non-muscle cells remain uncertain. Our aim was to test the hypothesis that the rhoA/rho-associated kinase signaling pathway is a principal mediator of contractile force generation in non-muscle cells. We measured myosin II regulatory light chain (MLC) phosphorylation and directly quantitated force generation by chicken embryo fibroblasts in the absence and presence of selective inhibitors of rhoA, and its downstream effector, rho-associated kinase. Inactivation of rhoA, with C3 transferase, inhibited serum-stimulated MLC phosphorylation and contractile force generation. Y-27632, an inhibitor of rho-associated kinase, reduced basal contractile tension, and inhibited both serum and endothelin-1 stimulated MLC phosphorylation and contractile force generation. The results of this study provide novel evidence indicating that the rhoA/rho-associated kinase signaling pathway is a principal mediator of MLC phosphorylation and consequent contractile force generation by non-muscle cells.  相似文献   

11.
12.
In the large heliozoan Echinosphaerium, contractile tubules (formerly called X-bodies) are located between the axopodial membrane and the axonemal microtubules. When axopodial contraction occurs, the tubules have been thought to be transformed from a tubular to a granular form, as seen in ultra-thin sections. Our detailed morphological observations of the contractile tubules, however, have revealed that this so-called granulation of the contractile tubules is mediated by self-twisting and supercoiling during contraction. We also examined the localization of calcium during axopodial contraction using a potassium pyroantimonate assay. Ca-Sb deposits were detected on contractile tubules only during the twisting and coiling of this organelle. Our results indicate that axopodial contraction is enforced by the twisting and coiling of contractile tubules, which action probably is mediated by Ca2+ ions.  相似文献   

13.
Platelet-activating factor (PAF) may be a mediator of some sequelae of cholecystitis, a disorder with gallbladder motor dysfunction. The aims of this study were to determine the effect and mechanism of PAF on gallbladder muscle. Exogenous administration of PAF-16 or PAF-18 caused dose-dependent contractions of gallbladder muscle strips in vitro with threshold doses of 1 ng/ml and 10 ng/ml, respectively. The PAF-induced contractions were not significantly reduced by TTX, atropine, or hexamethonium but were significantly inhibited with the PAF receptor antagonists ginkolide B and CV-3988. The PAF-induced contraction was reduced by indomethacin. Preventing influx of extracellular calcium with a calcium-free solution nearly abolished the PAF contractile response. Nifedipine inhibited the PAF contractile response, whereas ryanodine had no effect. Pertussis toxin reduced the PAF contractile response. In conclusion, PAF causes gallbladder contraction through specific PAF receptors on gallbladder muscle. These PAF receptors appear to be linked to a prostaglandin-mediated mechanism and to pertussis toxin-sensitive G proteins. The contractile response is largely mediated through the utilization of extracellular calcium influx through voltage-dependent calcium channels.  相似文献   

14.
The contractile ring is a remarkable tension-generating cellular machine that constricts and divides cells into two during cytokinesis, the final stage of the cell cycle. Since the ring’s discovery, the parallels with muscle have been emphasized. Both are contractile actomyosin machineries, and long ago, a muscle-like sliding filament mechanism was proposed for the ring. This review focuses on the mechanisms that generate ring tension and constrict contractile rings. The emphasis is on fission yeast, whose contractile ring is sufficiently well characterized that realistic mathematical models are feasible, and possible lessons from fission yeast that may apply to animal cells are discussed. Recent discoveries relevant to the organization in fission yeast rings suggest a stochastic steady-state version of the classic sliding filament mechanism for tension. The importance of different modes of anchoring for tension production and for organizational stability of constricting rings is discussed. Possible mechanisms are discussed that set the constriction rate and enable the contractile ring to meet the technical challenge of maintaining structural integrity and tension-generating capacity while continuously disassembling throughout constriction.  相似文献   

15.
MyoD is one of four myogenic regulatory factors found exclusively in skeletal muscle. In an effort to better understand the role that MyoD plays in determining muscle contractile properties, we examined the effects of MyoD deletion on both diaphragmatic contractile properties and myosin heavy chain (MHC) phenotype. Regions of the costal diaphragm from wild-type and MyoD knockout [MyoD (-/-)] adult male BALB/c mice (n = 8/group) were removed, and in vitro diaphragmatic contractile properties were measured. Diaphragmatic contractile measurements revealed that MyoD (-/-) animals exhibited a significant (P < 0.05) downward shift in the force-frequency relationship, a decrement in maximal specific tension (P(o); -33%), a decline in maximal shortening velocity (V(max); -37%), and concomitant decrease in peak power output (-47%). Determination of MHC isoforms in the diaphragm via gel electrophoresis revealed that MyoD elimination resulted in a fast-to-slow shift (P < 0.05) in the MHC phenotype toward MHC types IIA and IIX in MyoD (-/-) animals. These data indicate that MyoD deletion results in a decrease in diaphragmatic submaximal force generation and P(o), along with decrements in both V(max) and peak power output. Hence, MyoD plays an important role in determining diaphragmatic contractile properties.  相似文献   

16.
LvsA is a Dictyostelium protein that is essential for cytokinesis and that is related to the mammalian beige/LYST family of proteins. To better understand the function of this novel protein family we tagged LvsA with GFP using recombination techniques. GFP-LvsA is primarily associated with the membranes of the contractile vacuole system and it also has a punctate distribution in the cytoplasm. Two markers of the Dictyostelium contractile vacuole, the vacuolar proton pump and calmodulin, show extensive colocalization with GFP-LvsA on contractile vacuole membranes. Interestingly, the association of LvsA with contractile vacuole membranes occurs only during the discharge phase of the vacuole. In LvsA mutants the contractile vacuole becomes disorganized and calmodulin dissociates from the contractile vacuole membranes. Consequently, the contractile vacuole is unable to function normally, it can swell but seems unable to discharge and the LvsA mutants become osmosensitive. These results demonstrate that LvsA can associate transiently with the contractile vacuole membrane compartment and that this association is necessary for the function of the contractile vacuole during osmoregulation. This transient association with specific membrane compartments may be a general property of other BEACH-domain containing proteins.  相似文献   

17.
The influence of phorbol ester on the isometric contractile response of aorta from endotoxic rats was examined. In endotoxic rat aorta, the contractile responses to KCl and phorbol 12,13-dibutyrate (PDBu) were both remarkably diminished, compared to those in control rat aorta. Preincubation with PDBu augmented the aortic contractile response to KCl in both control and endotoxic rats. This augmentative effect of PDBu was significantly more pronounced in endotoxic rats than in controls. When the contractile response to 80 mM KCl reached a plateau after PDBu pretreatment, addition of 5 mM CaCl2 (final concentration) to the organ bath completely reversed the diminished contractile response of endotoxic rat aorta to the control level. These results suggest that the hyporesponsiveness of endotoxic rat aorta to KCl may be caused by decreases in both protein kinase C mediated response and calcium sensitivity of vascular smooth muscle cells.  相似文献   

18.
The contractile vacuole (CV) is an osmoregulatory organelle whose mechanisms of function are poorly understood. Immunological studies in the last decade have demonstrated abundant proton-translocating V-type ATPases (V-ATPases) in its membrane that could provide the energy, from proton electrochemical gradients, for moving ions into the CV to be followed by water. This review emphasizes recent work on the contractile vacuole complex (CVC) of Paramecium including (1) CV expulsion, (2) a role for V-ATPases in sequestering fluid, (3) identifying ions in the cytosol and in the CV, (4) in situ electrophysiological parameters of the CVC membrane, and (5) a better understanding of the membrane dynamics of this organelle.  相似文献   

19.
In anaphase, microtubules provide a specification signal for positioning of the contractile ring. However, the nature of the signal remains unknown. The small GTPase Rho is a potent regulator of cytokinesis, but the involvement of Rho in contractile ring formation is disputed. Here, we show that Rho serves as a microtubule-dependent signal that specifies the position of the contractile ring. We found that Rho translocates to the equatorial region before furrow ingression. The Rho-specific inhibitor C3 exoenzyme and small interfering RNA to the Rho GDP/GTP exchange factor ECT2 prevent this translocation and disrupt contractile ring formation, indicating that active Rho is required for contractile ring formation. ECT2 forms a complex with the GTPase-activating protein MgcRacGAP and the kinesinlike protein MKLP1 at the central spindle, and the localization of ECT2 at the central spindle depends on MgcRacGAP and MKLP1. In addition, we show that the bundled microtubules direct Rho-mediated signaling molecules to the furrowing site and regulate furrow formation. Our study provides strong evidence for the requirement of Rho-mediated signaling in contractile ring formation.  相似文献   

20.
A new dynamic model of left ventricular (LV) pressure-volume relationships in beating heart was developed by mathematically linking chamber pressure-volume dynamics with cardiac muscle force-length dynamics. The dynamic LV model accounted for >80% of the measured variation in pressure caused by small-amplitude volume perturbation in an otherwise isovolumically beating, isolated rat heart. The dynamic LV model produced good fits to pressure responses to volume perturbations, but there existed some systematic features in the residual errors of the fits. The issue was whether these residual errors would be damaging to an application where the dynamic LV model was used with LV pressure and volume measurements to estimate myocardial contractile parameters. Good agreement among myocardial parameters responsible for response magnitude was found between those derived by geometric transformations of parameters of the dynamic LV model estimated in beating heart and those found by direct measurement in constantly activated, isolated muscle fibers. Good agreement was also found among myocardial kinetic parameters estimated in each of the two preparations. Thus the small systematic residual errors from fitting the LV model to the dynamic pressure-volume measurements do not interfere with use of the dynamic LV model to estimate contractile parameters of myocardium. Dynamic contractile behavior of cardiac muscle can now be obtained from a beating heart by judicious application of the dynamic LV model to information-rich pressure and volume signals. This provides for the first time a bridge between the dynamics of cardiac muscle function and the dynamics of heart function and allows a beating heart to be used in studies where the relevance of myofilament contractile behavior to cardiovascular system function may be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号