首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bovine plasma zymogen prothrombin contains a number of gamma-carboxyglutamic acid residues which are not found in an abnormal prothrombin produced when cattle are given the vitamin K antagonist dicoumarol. These modified glutamic acid residues appear to be formed post-translationally by a reaction which requires vitamin K. It has been shown that postmitochondrial supernates from vitamin K-deficient rats incorporate added H-14-CO3- minus into microsomal proteins upon the addition of vitamin K. This incorporation is dependent upon the presence of the prothrombin precursor in the microsomal preparations, and upon factors which are present in the postmicrosomal supernatant. Most of the radioactive protein which can be obtained from the microsomal pellet by extraction with 0.25% Triton X-100 has been identified as prothrombin and it can be shown that all of the radioactivity is in the amino-terminal activation fragment of prothrombin. This portion of the protein has previously been shown to contain the gamma-carboxyglutamic acid residues. Hydrolysis of the purified radioactive prothrombin resulted in a loss of 50% of the radioactivity and subsequent chromatography of the amino acid hydrolyzate demonstrated that the remaining radioactivity was entirely in glutamic acid. These results are consistent with the hypothesis that all of the H-14-CO3- minus was incorporated into the carboxyl groups of gamma-carboxyglutamic acid residues.  相似文献   

2.
Tryptic peptides obtained from normal prothrombin have been compared with those obtained from prothrombin synthesized by cattle given the vitamin K antagonist dicumarol. Two peptides were found which contain vitamin K-dependent structures. These peptides contain residues 4 through 10 and residues 12 through 44, respectively. One of these (residues 4 through 10) has previously been shown to contain gamma-carboxyglutamic acid residues. Digestion of this peptide with aminopeptidase M and carboxypeptidase B yielded a tetrapeptide (residues 6 through 9). Mass spectra of this peptide showed that it has the structure Leu-Glu(CO2)-Glu(CO2)-Val. The structure of the peptide containing residues 12 through 44 was determined by automated degradation in a peptide sequenator. The modified glutamic acid residues were identified by mass spectrometric comparison with the thiohydantoin derivatives of synthetic gamma-carboxyglutamic acid. This approach unequivocally demonstrated that all of the first 10 glutamic acid residues in prothrombin are carboxylated to form gamma-carboxyglutamic acid residues. Evidence is also presented that indicates that these gamma-carboxyglutamic acid residues constitute the entire vitamin K-dependent modification of prothrombin.  相似文献   

3.
Serum des-gamma-carboxy prothrombin (DCP) is a useful marker for the diagnosis of hepatocellular carcinoma (HCC), but the exact mechanism of its synthesis and its structural properties in liver diseases are unknown. DCP is measured by the monoclonal antibody MU-3. The purpose of this study was to examine the epitope of MU-3 and to characterize the differences in DCP between HCC and benign liver diseases. The epitope of MU-3 was examined by ELISA using prothrombin Gla domain polypeptides and was determined to be amino acid residues 17-27 of the prothrombin Gla domain, which has four gamma-carboxyglutamic acid residues (Gla) at positions 19, 20, 25 and 26. Peptides having a glutamic acid residue (Glu) at these positions reacted strongly to MU-3 but lost reactivity when Glu 19 or 20 was changed to Gla. In the order of gamma-carboxylation, MU-3 reacted strongly to DCP containing 0-1 Gla, weakly to 2-4 Gla and not at all to DCP containing more than five Gla. After adsorbing normal prothrombin with barium carbonate, DCP reaction to MU-3 was measured by determining the amount of DCP that was adsorbed by MU-3-coated beads. The proportion of DCP reacting to MU-3 in HCC was 41.0-76.8%, whereas in patients with benign liver diseases, only 0-42.1% reacted to MU-3. These results indicate that DCP variants preferentially synthesized in HCC have less than four Gla, which are restricted to positions 16, 25, 26 and 29, whereas DCP variants in benign liver diseases have more than five Gla.  相似文献   

4.
Serum des-γ-carboxy prothrombin (DCP) is a useful marker for the diagnosis of hepatocellular carcinoma (HCC), but the exact mechanism of its synthesis and its structural properties in liver diseases are unknown. DCP is measured by the monoclonal antibody MU-3. The purpose of this study was to examine the epitope of MU-3 and to characterize the differences in DCP between HCC and benign liver diseases. The epitope of MU-3 was examined by ELISA using prothrombin Gla domain polypeptides and was determined to be amino acid residues 17–27 of the prothrombin Gla domain, which has four γ-carboxyglutamic acid residues (Gla) at positions 19, 20, 25 and 26. Peptides having a glutamic acid residue (Glu) at these positions reacted strongly to MU-3 but lost reactivity when Glu 19 or 20 was changed to Gla. In the order of γ-carboxylation, MU-3 reacted strongly to DCP containing 0–1 Gla, weakly to 2–4 Gla and not at all to DCP containing more than five Gla. After adsorbing normal prothrombin with barium carbonate, DCP reaction to MU-3 was measured by determining the amount of DCP that was adsorbed by MU-3-coated beads. The proportion of DCP reacting to MU-3 in HCC was 41.0–76.8%, whereas in patients with benign liver diseases, only 0–42.1% reacted to MU-3. These results indicate that DCP variants preferentially synthesized in HCC have less than four Gla, which are restricted to positions 16, 25, 26 and 29, whereas DCP variants in benign liver diseases have more than five Gla.  相似文献   

5.
The present study has made use of a covalent cross-linking agent, dithiobis(succinimidylpropionate), to study the self-association of prothrombin and has demonstrated that the covalent dimerization reaction involves the gamma-carboxyglutamic acid region of prothrombin (1-42 of 582). An essential role for the gamma-carboxyglutamic acid residues of prothrombin in the association reaction was demonstrated by experiments that converted gamma-carboxyglutamic acid residues to gamma-methylene glutamic acid or glutamic acid and resulted in a prothrombin species that was inactive in our cross-linking assay. Other experiments showed that very high concentrations of calcium ion inhibit the cross-linkage of prothrombin. This result is most consistent with an essential gamma-carboxyglutamic acid-calcium ion-gamma-carboxyglutamic acid bridge(s) in the calcium-dependent self-associated form of prothrombin.  相似文献   

6.
The primary structure of a cell-binding bone sialoprotein   总被引:14,自引:0,他引:14  
We have determined the amino acid sequence of rat bone sialoprotein (BSP). The sequence deduced from a 1974-base pair cDNA encodes a protein of 320 residues, including a 16-residues long signal peptide. The mature BSP has a molecular mass of 33,600 and contains predominantly glutamic acid and glycine residues, which constitute 32% of all residues. The glutamic acid residues are typically distributed in clusters of up to 10 consecutive residues. The tissue distribution of BSP mRNA suggests that the protein may be a unique product of cells in bone tissue. BSP contains an Arg-Gly-Asp sequence, which presumably is responsible for its cell binding properties (Oldberg, A., Franzén, A., Heineg?rd, D., Pierschbacher, M., and Ruoslahti, E. (1988) J. Biol. Chem. 263, 19433-19436).  相似文献   

7.
D J Liska  J W Suttie 《Biochemistry》1988,27(23):8636-8641
Prothrombin contains 10 gamma-carboxyglutamyl (Gla) residues in the N-terminal (fragment 1) domain of the protein. Following anticoagulant administration, a spectrum of undercarboxylated, physiologically less active forms of prothrombin is secreted into bovine or human plasma. The sites of undercarboxylation in these prothrombin species have now been investigated. Plasma containing a mixture of partially carboxylated forms of prothombin was obtained from a dicoumarol-treated bovine, and three pools of partially carboxylated (four, six, or eight Gla) species were purified by adsorption onto barium citrate and barium oxalate, ammonium sulfate fractionation, and chromatography. Fragment 1 obtained from these variants was equilibrated with 3H2O and heated in a dry state to decarboxylate Gla and incorporate 3H into the resulting Glu residues. This peptide was then sequenced by Edman degradation, and the specific radioactivity of PTH-Glu was determined for each potential Gla-containing site. Data obtained from normal prothrombin fragment 1 fit a linear model when the log of specific activity of PTH-Glu was plotted against the cycle number. Analysis of the 80% variant showed a decrease in carboxylation only in the last two Gla residues, while data obtained from the 60% variant indicated a general decrease in carboxylation from the most amino- to the more carboxyl-terminal Gla residues. In the 40% Gla variant, all but the most amino-terminal of the Gla residues appeared to be undercarboxylated. These data indicate that the gamma-carboxylation of glutamyl residues in prothrombin does not occur randomly but instead with preferential carboxylation of the most amino-terminal Gla residues. When carboxylation is limited, the impairment of carboxylation is more severe at the more carboxyl-terminal residues.  相似文献   

8.
Summary Arginine-rich basic protein from cytoplasma of Guerin epitheliomas has been isolated and characterized. It contains five amino acids: arginine, lysine, glycine, alanine and glutamic acid which make together 74 per cent of all amino acid residues. The protein has a cationic character with an isoelectric point of 8.2. No carbohydrate component was found in this protein. The significance of arginine-rich basic protein in the cytoplasma of Guerin epithelioma is discussed briefly.  相似文献   

9.
The amino acid sequence of residues 1–51 of human prothrombin fragment 1 has been determined. This 51 residue peptide is 1 residue shorter than the comparable bovine region and 8 of the amino acid residues are different. The positions of 10 glutamic acid residues are identical to the γ-carboxylated ones in the bovine species. From this homology and additional evidence, these residues in human prothrombin are considered to be γ-carboxylated. The sequence was completed by automated Edman degradation of the reduced, alkylated fragment and its subfragmentation with trypsin, thermolysin and acid hydrolysis.  相似文献   

10.
Summary Gamma-carboxyglutamic acid is an amino acid with a dicarboxylic acid side chain. This amino acid, with unique metal binding properties, confers metal binding character to the proteins into which it is incorporated. This amino acid has been discovered in blood coagulation proteins (prothrombin, Factor X, Factor IX, and Factor VII), plasma proteins of unknown function (Protein C, Protein S, and Protein Z), and proteins from calcified tissue (osteocalcin and bone-Gla protein). It has also been observed in renal calculi, atherosclerotic plaque, and the egg chorioallantoic membrane, among other tissues. Gamma-carboxyglutamic acid is synthesized by the post-translational modification of glutamic acid residues. This reaction, catalyzed by a hepatic carboxylase, requires reduced vitamin K, oxygen, and carbon dioxide. The function of -carboxyglutamic acid is uncertain. In prothrombin y-carboxyglutamic acid residues bound to metal ions participate as an intramolecular non-covalent bridge to maintain protein conformation. Additionally, these amino acids participate in the calcium-dependent molecular assembly of proteins on membrane surfaces through intermolecular bridges involving y-carboxyglutamic acid and metal ions.  相似文献   

11.
Chemical modification of gamma-carboxyglutamic acid (Gla) residues in human prothrombin to gamma-methyleneglutamic acid (gamma-MGlu) residues elicited a conformation similar, if not identical, to that of des-gamma-carboxy prothrombin or PIVKA-II, i.e., prothrombin molecules induced by vitamin K antagonists or vitamin K deficiency states. The reaction seems to proceed sequentially by preferentially modifying a Gla at residue 32 that is located innermost among 10 Gla residues of human prothrombin. The initial modification resulted in nearly 50% losses of barium salt adsorption, the procoagulant activity and thrombin generation by the prothrombinase complex. The subsequent modification of two Gla residues at positions 6 and 16 gave rise to the immunoreactivity to an established monoclonal antibody that specifically recognizes the des-gamma-carboxy prothrombin. Further modification of Gla residues increased the reactivity to the antibody, indicating that the conformation recognized by the antibody was stabilized so as to more readily fit the recognition site of the antibody. The appearance of the immunoreactivity was obviously related to the modification of Gla residues in prothrombin, since all other similarly treated derivatives of prothrombin lacking the Gla-domain failed to react with the antibody. Such chemically modified prothrombins may serve as models for studying abnormal des-gamma-carboxy prothrombin produced in vitamin K deficiency states.  相似文献   

12.
The role of gamma-carboxyglutamic acid in prothrombin has been examined using partially carboxylated variant prothrombins isolated from a person with a hereditary defect in vitamin K-dependent carboxylation. These species differ in gamma-carboxyglutamic acid content, distribution, and function, as monitored by metal binding properties, conformational transitions, phospholipid binding, and calcium-dependent coagulant activity (Borowski, M., Furie, B. C., Goldsmith, G. H., and Furie, B. (1985) J. Biol. Chem. 260, 9258-9264). The distribution of gamma-carboxyglutamic acids in the variant prothrombin species was determined by specific tritium incorporation into gamma-carboxyglutamic acid residues, thermal decarboxylation, and automated Edman degradation. gamma-Carboxyglutamic acid residues in the partially carboxylated prothrombins were identified by the assay of tritium in the resultant glutamic acid residues in the acarboxyprothrombins. The results indicate that variant prothrombins 1-3 are nearly homogeneous populations of partially carboxylated prothrombins. The ability of prothrombin to undergo a metal-induced conformational change and to bind to phospholipid vesicles correlated closely to the presence of a gamma-carboxyglutamic acid at residue 16. This residue is likely involved in the formation of a critical high affinity metal-binding site, possibly formed by Gla 16 and Gla 25 and/or Gla 26. A second high affinity metal-binding site, present in all of the variant prothrombin species, is defined, as an upper limit, by Gla 6, Gla 14, Gla 19, and Gla 20. This region is likely responsible for the interaction of certain of the conformation-specific antibodies to the metal-stabilized conformer of prothrombin.  相似文献   

13.
1. A method is described for the simultaneous isolation of both Factor X and prothrombin from bovine plasma. The proteins are adsorbed on and eluted from barium sulphate and chromatographed on DEAE-Sephadex and are finally purified by rechromatography on DEAE-Sephadex. 2. The proteins can be purified in 48h from the collection of the blood and the method can be used to process large volumes of plasma. 3. The prothrombin has a molecular weight of 70300; the Factor X, on the other hand, is polydisperse, with most of the protein (86%) having a molecular weight of 56000.  相似文献   

14.
Inorganic pyrophosphatase of E. coli is rapidly and irreversibly inactivated by 5-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward's reagent K). The appearance in the absorption spectrum of a maximum at 340 nm testifies to the formation of an enzyme enol ester with the inhibitor. The non-hydrolyzable substrate analog CaPP1 partly protects the enzyme from inactivation. A peptide has been isolated from a tryptic hydrolysate of inactivated enzyme which contains an amino acid residue whose modification is critical for the enzyme activity. This peptide corresponds to residues 95-104 of pyrophosphatase and contains four dicarboxylic acid residues. A peptide containing a modified glutamic acid residue was isolated from modified pyrophosphatase hydrolyzed by protease v8. This peptide represents a fragment of a tryptic modified peptide and has a Glu-Ala-Gly-Glu (residues 98-1C1) structure. It is concluded that inactivation of E. coli pyrophosphatase by Woodward's reagent K is a result of selective modification of Glu98, apparently by the most reactive dicarboxylic amino acid within the enzyme active center.  相似文献   

15.
Gene 22 of bacteriophage T4 encodes a major prohead scaffolding core protein of 269 amino acid residues. From its nucleotide sequence the gene product (gp) 22 has a predicted Mr of 29.9 and a pI of 4.3. The protein is rich in charged residues (glutamic acid and lysine) and contains low amounts of proline and glycine and no cysteine residues. We suggest that gp22 undergoes limited proteolytic processing which eliminates the short C-terminal piece from the molecule during the early steps of prohead assembly. Most amino acid residues of the gp22 polypeptide chain (80%) have an alpha-helical conformation and form seven peculiar alpha-helices. A model suggesting the spatial organization of gp22 is presented. Three long alpha-helices numbered 1 (1A and 1B), 3, and 5 (5A and 5B) are packed in an antiparallel fashion along the major axis of the road-shaped molecule. Two rather short alpha-helices (2 and 4) are located at the distal and proximal ends of the protein molecule, respectively. Helix number 2, which is a proteolytic fragment of gp22 found in mature T4 heads, is packed with helices 1A and 3, similar to a novel element of supersecondary structure, the alpha alpha-corner. Helix number 4 probably interacts with the gp20 connector of the prohead. The implications of the structure of the gp22 molecule for the assembly of the prohead core are discussed.  相似文献   

16.
Structure of bovine prothrombin fragment 1 refined at 2.25 A resolution.   总被引:4,自引:0,他引:4  
The structure of bovine prothrombin fragment 1 has been refined at 2.25 A resolution using high resolution measurements made with the synchrotron beam at CHESS. The synchrotron data were collected photographically by oscillation methods (R-merge = 0.08). These were combined with lower order diffractometer data for refinement purposes. The structure was refined using restrained least-squares methods with the program PROLSQ to a crystallographic R-value of 0.175. The structure includes 105 water molecules with occupancies of greater than 0.6. The first 35 residues (Ala1-Leu35) of the N-terminal gamma-carboxy glutamic acid-domain (Ala1-Cys48) of fragment 1 are disordered as are two carbohydrate chains of Mr approximately 5000; the latter two combine to render 40% of the structure disordered. The folding of the kringle of fragment 1 is related to the close intramolecular contact between the inner loop disulfide groups. Half of the conserved sequence of the kringle forms an inner core surrounding these disulfide groups. The remainder of the sequence conservation is associated with the many turns of the main chain. The Pro95 residue of the kringle has a cis conformation and Tyr74 is ordered in fragment 1, although nuclear magnetic resonance studies indicate that the comparable residue of plasminogen kringle 4 has two positions. Surface accessibility calculations indicate that none of the disulfide groups of fragment 1 is accessible to solvent.  相似文献   

17.
The crystal and molecular structure of a dipeptide containing a blocked gamma-carboxyglutamyl (Gla) residue is presented. Two intermolecular hydrogen bonds link the amides with carbonyl groups in the dipeptide backbone, but the protected gamma-carboxy groups on the modified glutamic acid are not hydrogen bonded.  相似文献   

18.
H M Lu  S Mizushima    S Lory 《Journal of bacteriology》1993,175(22):7463-7467
Pseudomonas aeruginosa exotoxin A is synthesized with a secretion signal peptide typical of proteins whose final destination is the periplasm. However, exotoxin A is released from the cell without a detectable periplasmic pool, suggesting that additional determinants in this protein are important for recognition by a specialized machinery of extracellular secretion. The role of the N terminus of the mature exotoxin A in this recognition was investigated. A series of exotoxin A proteins with amino acid substitutions for the glutamic acid pair at the +2 and +3 positions were constructed by mutagenesis of the exotoxin A gene. These N-terminal acidic residues of the mature exotoxin A protein were found to be important not only for efficient processing of the precursor protein but also for extracellular localization of the toxin. The mutated exotoxin A proteins, in which a glutamic acid at the +2 position was replaced by a lysine or a double substitution of lysine and glutamine for the pair of adjacent glutamic acids, accumulated in precursor forms in the mixed cytoplasmic and membrane fractions, which was not seen with the wild-type exotoxin A. The processing of the precursor form of one exotoxin A mutant, in which the glutamic acid at the +2 position was replaced with a glutamine, was not affected. Moreover, a substantial fraction of the mature forms of all three mutants of exotoxin A accumulated in the periplasm, while wild-type exotoxin A could be detected only extracellularly. The periplasmic pools of these variants of exotoxin A could therefore represent the intermediate state during extracellular secretion. The signal for extracellular localization may be located in a small region near the amino terminus of the mature protein or could consist of several regions that are brought together after the polypeptide has folded. Alternatively, the acidic residues may be important for ensuring a conformation essential for exotoxin A to traverse the outer membrane.  相似文献   

19.
The amino-terminal peptides of human prothrombin corresponding to residues 1-51 and 52-156 have been isolated from a thrombin digest of prothrombin fragment 1. The products of digestion were purified by means of barium citrate and ammonium sulfate precipitations, followed by gel filtration and hydroxyapatite chromatographies. They were identified by their molecular sizes as well as their amino acid compositions. Peptides 1-51 (F1A) and 52-156 (F1B) were used as affinity ligands for the isolation of antibody populations from antisera that were elicited against human prothrombin or prothrombin fragment 1. These antibody populations displayed restricted specificity for the respective ligands as shown by competitive radioimmunoassays. They were used to study the conformational changes in prothrombin and fragment 1. The F1A-specific antibody populations detected a conformational change which is stabilized by calcium ions and which has a transition midpoint at approximately 0.2 mM calcium ion concentration. The F1B-specific antibody populations identified a different conformational change which is destabilized by calcium ions and which has a transition midpoint at approximately 0.5 mM calcium.  相似文献   

20.
A glutamate-binding protein from rat brain synaptic plasma membranes has been purified to apparent homogeneity. This protein has a Mr of 14,300 based on amino acid and carbohydrate analyses. The protein is enriched with tryptophan residues, which contribute substantially to its hydrophobic nature. It also has a relatively high content of acidic amino acids, which determine is low isoelectric point (4.82). The protein exhibits either a single, high-affinity class of sites for L-[3H]glutamate binding (KD = 0.13 microM) when binding is measured at low protein concentrations, or two classes of sites with high (KD = 0.17 microM) and low affinities (KD = 0.8 microM) when binding is measured at high protein concentrations. These observations suggest preferential binding of L-glutamate to a self-associating form of the protein. The displacement of protein-bound L-[3H]glutamic acid by other neuroactive amino acids has characteristics similar to those observed for displacement of L-glutamate from membrane binding sites. Chemical modification of the cysteine and arginine residues results in an inhibition of glutamate binding activity. The possible function of this protein in the physiologic glutamate receptor complex of neuronal membranes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号