首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth-promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT-1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth-promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response.  相似文献   

2.
It is generally believed that the mechanism of action of neurotrophic factors involves uptake of neurotrophic factor by nerve terminals and retrograde transport through the axon and back to the cell body where the factor exerts its neurotrophic effect. This view originated with the observation almost 20 years ago that nerve growth factor (NGF) is retrogradely transported by sympathetic axons, arriving intact at the neuronal cell bodies in sympathetic ganglia. However, experiments using compartmented cultures of rat sympathetic neurons have shown that neurite growth is a local response of neurites to NGF locally applied to them which does not directly involve mechanisms in the cell body. Recently, several NGF-related neurotrophins have been identified, and several unrelated molecules have been shown to act as neurotrophic or differentiation factors for a variety of types of neurons in the peripheral and central nervous systems. It has become clear that knowledge of the mechanisms of action of these factors will be crucial to understanding neurodegenerative diseases and the development of treatments as well as the means to repair or minimize neuronal damage after spinal injury. The concepts derived from work with NGF suggest that the site of exposure of a neuron to a neurotrophic factor is important in determining its response. 1994 John Wiley & Sons, Inc.  相似文献   

3.
In the developing vertebrate nervous system the survival of neurons becomes dependent on the supply of a neurotrophic factor from their targets when their axons reach these targets. To determine how the onset of neurotrophic factor dependency is coordinated with the arrival of axons in the target field, we have studied the growth and survival of four populations of cranial sensory neurons whose axons have markedly different distances to grow to reach their targets. Axonal growth rate both in vivo and in vitro is related to target distance; neurons with more distant targets grow faster. The onset trophic factor dependency in culture is also related to target distance; neurons with more distant targets survive longer before becoming trophic factor dependent. These data suggest that programmes of growth and survival in early neurons play an important role in coordinating the timing of trophic interactions in the developing nervous system.  相似文献   

4.
Epidermal growth factor (EGF)-responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self-renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF-responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF-generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain-derived neurotrophic factor (BDNF) (5 ng in 0.5 microL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF-responsive stem cell-derived neurons possess limited intrinsic capability for long-distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF-responsive stem cell-derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF.  相似文献   

5.
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth‐promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin‐1 (CT‐1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line‐derived neurotrophic factor (GDNF) and neurotrophin‐3 (NT‐3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth‐promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 101–114, 2002  相似文献   

6.
Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) mRNA before differentiation. BDNF gene expression significantly decreases with their differentiation into the specific lineage, whereas CNTF gene expression significantly increases. The temporal pattern of neurotrophic factor gene expression in progenitor cells is similar to that of the spinal cord during postnatal development. Approximately 50% of spinal progenitor cells differentiated into astrocytes. To determine the effect of endogenous CNTF on their differentiation, we neutralized endogenous CNTF by administration of its polyclonal antibody. Neutralization of endogenous CNTF inhibited the differentiation of progenitor cells into astrocytes, but did not affect the numbers of neurons or oligodendrocytes. Furthermore, to mimic the profile of neurotrophic factors in the spinal cord during embryonic development, we applied BDNF or neurotrophin (NT)-3 exogenously in combination with the anti-CNTF antibody. The exogenous application of BDNF or NT-3 promoted the differentiation of these cells into neurons or oligodendrocytes, respectively. These findings suggest that endogenous CNTF and exogenous BDNF and NT-3 play roles in the differentiation of embryonic spinal cord derived progenitor cells into astrocytes, neurons and oligodendrocytes, respectively.  相似文献   

7.
Does oligodendrocyte survival depend on axons?   总被引:7,自引:0,他引:7  
BACKGROUND: We have shown previously that oligodendrocytes and their precursors require signals from other cells in order to survive in culture. In addition, we have shown that about 50% of the oligodendrocytes produced in the developing rat optic nerve normally die, apparently in a competition for the limiting amounts of survival factors. We have hypothesized that axons may control the levels of such oligodendrocyte survival factors and that the competition-dependent death of oligodendrocytes serves to match their numbers to the number of axons that they myelinate. Here we test one prediction of this hypothesis - that the survival of developing oligodendrocytes depends on axons. RESULTS: We show that oligodendrocyte death occurs selectively in transected nerves in which the axons degenerate. This cell death is prevented by the delivery of exogenous ciliary neurotrophic factor (CNTF) or insulin-like growth factor I (IGF-1), both of which have been shown to promote oligodendrocyte survival in vitro. We also show that purified neurons promote the survival of purified oligodendrocytes in vitro. CONCLUSION: These results strongly suggest that oligodendrocyte survival depends upon the presence of axons; they also support the hypothesis that a competition for axon-dependent survival signals normally helps adjust the number of oligodendrocytes to the number of axons that require myelination. The identities of these signals remain to be determined.  相似文献   

8.
The development of connections between neurons and their target cells involves competition between axons for target-derived neurotrophic factors. Although the notion of competition is commonly used in neurobiology, the process is not well understood, and only a few formal models exist. In population biology, in contrast, the concept of competition is well developed and has been studied by means of many formal models of consumer-resource systems. Here we show that a recently formulated model of axonal competition can be rewritten as a general consumer-resource system. This allows neurobiological phenomena to be interpreted in population biological terms and, conversely, results from population biology to be applied to neurobiology. Using findings from population biology, we have studied two extensions of our axonal competition model. In the first extension, the spatial dimension of the target is explicitly taken into account. We show that distance between axons on their target mitigates competition and permits the coexistence of axons. The model can account for the fact that in many types of neurons a positive correlation exists between the size of the dendritic tree and the number of innervating axons surviving into adulthood. In the second extension, axons are allowed to respond to more than one neurotrophic factor. We show that this permits competitive exclusion among axons of one type, while at the same time there is coexistence with axons of another type innervating the same target. The model offers an explanation for the innervation pattern found on cerebellar Purkinje cells, where climbing fibres compete with each other until only a single one remains, which coexists with parallel fibre input to the same Purkinje cell.  相似文献   

9.
K S Vogel  A M Davies 《Neuron》1991,7(5):819-830
To investigate how the onset of neurotrophic factor dependence in neurons is coordinated with the arrival of their axons in the target field, we have studied the survival of four populations of cranial sensory neurons whose axons reach their common central target field, the hindbrain, at different times. We show that neurons whose axons reach the hindbrain first survive for a short time in culture before responding to brain-derived neurotrophic factor (BDNF). Neurons whose axons reach the hindbrain later survive longer before responding to BDNF. These differences in survival, which arise prior to gangliogenesis, may play a role in coordinating trophic interactions for cranial sensory neurons.  相似文献   

10.
Epidermal growth factor (EGF)–responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self‐renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF‐responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF‐generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain‐derived neurotrophic factor (BDNF) (5 ng in 0.5 μL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF‐responsive stem cell‐derived neurons possess limited intrinsic capability for long‐distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF‐responsive stem cell–derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 391–413, 1999  相似文献   

11.
Traditional views of neurotrophic factor biology held that trophic factors are released from target cells, retrogradely transported along their axons, and rapidly degraded upon arrival in cell bodies. Increasing evidence indicates that several trophic factors such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF-2), glial cell-line derived neurotrophic factor (GDNF), insulin-like growth factor (IGF-I), and neurotrophin-3 (NT-3), can move anterogradely along axons. They can escape the degradative pathway upon internalization and are recycled for future uses. Internalized ligands can move through intermediary cells by transcytosis, presumably by endocytosis via endosomes to the Golgi system, by trafficking of the factor to dendrites or by sorting into anterograde axonal transport with subsequent release from axon terminals and uptake by second- or third-order target neurons. Such data suggest the existence of multiple “trophic currencies,” which may be used over several steps in neural networks to enable nurturing relationships between connected neurons or glial cells, not unlike currency exchanges between trading partners in the world economy. Functions of multistep transfer of trophic material through neural networks may include regulation of neuronal survival, differentiation of phenotypes and dendritic morphology, synapse plasticity, as well as excitatory neurotransmission. The molecular mechanisms of sorting, trafficking, and release of trophic factors from distinct neuronal compartments are important for an understanding of neurotrophism, but they present challenging tasks owing to the low levels of the endogeneous factors.  相似文献   

12.
Shortly after neurons begin to innervate their targets in the developing vertebrate nervous system they become dependent on the supply of a neurotrophic factor, such as nerve growth factor (NGF) for survival. Recently, Martin et al. (1988) have shown that inhibiting protein synthesis prevents the death of NGF-deprived sympathetic neurons, suggesting that NGF promotes neuronal survival by suppressing an active cell death program. To determine if other neurotrophic factors may regulate neuronal survival by a similar mechanism we examined the effects of inhibiting protein and RNA synthesis in other populations of embryonic neurons that require different neurotrophic factors, namely: 1) trigeminal mesencephalic neurons, a population of proprioceptive neurons that are supported by brain-derived neurotrophic factor; 2) dorsomedial trigeminal ganglion neurons, a population of cutaneous sensory neurons that are supported by NGF; 3) and ciliary ganglion neurons, a population of parasympathetic neurons that are supported by ciliary neuronotrophic factor. Blocking either protein or RNA synthesis rescued all three populations of neurons from cell death induced by neurotrophic factor deprivation in vitro. Thus, at least three different neurotrophic factors appear to promote survival by a similar mechanism that may involve the suppression of an endogenous cell death program.  相似文献   

13.
Nerve growth factor (NGF) and related neurotrophins are target-derived survival factors for sensory neurons. In addition, these peptides modulate neuronal differentiation, axon guidance, and synaptic plasticity. We tested axonal behavior of embryonic trigeminal neurons towards localized sources of NGF in collagen gel assays. Trigeminal axons preferentially grow towards lower doses of localized NGF and grow away from higher concentrations at earlier stages of development, but do not show this response later. Dorsal root ganglion axons also show similar responses to NGF, but NGF-dependent superior cervical ganglion axons do not. Such axonal responses to localized NGF sources were also observed in Bax-/- mice, suggesting that the axonal effects are largely independent of cell survival. Immunocytochemical studies indicated that axons, which grow towards or away from localized NGF are TrkA-positive, and TrkA-/- TG axons do not respond to any dose of NGF. We further show that axonal responses to NGF are absent in TG derived from mice that lack the p75 neurotrophin receptor (p75NTR). Collectively, our results suggest that localized sources of NGF can direct axon outgrowth from trigeminal ganglion in a dose- and age-dependent fashion, mediated by p75NTR signaling through TrkA expressing axons.  相似文献   

14.
Promoting and directing axon outgrowth   总被引:6,自引:0,他引:6  
Establishment of appropriate neuronal connections during development and regeneration requires the extension of processes that must then grow in the correct direction, find and recognize their targets, and make synapses with them. During development, embryonic neurons gradually establish central and peripheral connections in an evolving cellular environment in which neurotrophic factors are provided by supporting and target cells that promote neuronal survival, differentiation, and process outgrowth. Some cells also release neurotropic factors that direct the outgrowth of neuronal processes toward their targets. Following development the neurotrophic requirements of some adult neurons change so that, although they respond to neurotrophic factors, they no longer require exogenous neurotrophins to survive or to extend processes. Within the central nervous system (CNS), the ability of neurons to extend processes is eventually lost because of a change in their cellular environment from outgrowth permissive to inhibitory. Thus, neuronal connections that are lost in the adult CNS are rarely reestablished. In contrast, the environment of the adult peripheral nervous system fosters process outgrowth and synapse formation. This article discusses the neurotrophic requirements of embryonic and adult neurons, as well as the importance of neurotropic factors in directing the outgrowth of regenerating adult axons.  相似文献   

15.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc.  相似文献   

16.
The cellular and molecular basis of peripheral nerve regeneration   总被引:48,自引:0,他引:48  
Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such asN-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regeneration may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.  相似文献   

17.
Role of neurotrophic factors in development   总被引:6,自引:0,他引:6  
Neurotrophic factors are molecules which promote and regulate neuronal survival in the developing nervous system. They are distinguished from ubiquitous metabolites necessary for cellular maintenance and growth by their specificity: each neurotrophic factor promotes the survival of only certain kinds of neurons during a particular stage of their development. In addition, it has been argued that neurotrophic factors are involved in many other aspects of neuronal development ranging from axonal guidance to regulation of neurotransmitter synthesis. Recent developmental studies and the use of specific molecular probes have greatly clarified the role of these molecules.  相似文献   

18.
Neural stem cells (NSCs) or neuronal progenitor cells are cells capable of differentiating into oligodendrocytes, myelin-forming cells that have the potential of remyelination. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are two neurotrophic factors that have been studied to stimulate NSC differentiation thus playing a role in multiple sclerosis pathogenesis and several other demyelinating disorders. While several studies have demonstrated the proliferative and protective capabilities of these neurotrophic factors, their cellular and molecular functions are still not well understood. Thus, in the present study, we focus on understanding the role of these neurotrophins (BDNF and NGF) in oligodendrogenesis from NSCs. Both neurotrophic factors have been shown to promote NSC proliferation and NSC differentiation particularly into oligodendroglial lineage in a dose-dependent fashion. Further, to establish the role of these neurotrophins in NSC differentiation, we have employed pharmacological inhibitors for TrkA and TrkB receptors in NSCs. The use of these inhibitors suppressed NSC differentiation into oligodendrocytes along with the downregulation of phosphorylated ERK suggesting active involvement of ERK in the functioning of these neurotrophins. The morphometric analysis also revealed the important role of both neurotrophins in oligodendrocytes development. These findings highlight the importance of neurotrophic factors in stimulating NSC differentiation and may pave a role for future studies to develop neurotrophic factor replacement therapies to achieve remyelination.  相似文献   

19.
CNTF (ciliary neurotrophic factor), purified from rabbit sciatic nerves by a relatively simple procedure, is bioactive in tissue culture at low picomolar concentration and appears as a doublet on polyacrylamide gel electrophoresis (PAGE). In these nerves, CNTF accounts for more than one-half of the survival-promoting activity on ciliary neurons. The concentration of CNTF in rabbit sciatic nerves is estimated to be 5 nmol/kg, more than 1000 times higher than would seem to be required to support neurons if the neurotrophic factor were homogeneously distributed. With recombinant DNA technology, rat CNTF has been synthesized in Escherichia coli, purified without denaturating agents, and found to be bioactive at a slightly lower concentration than CNTF extracted from rabbit sciatic nerves. After radioiodination, CNTF retains biological activity but is not specifically internalized and retrogradely transported in motor and sensory axons. In peripheral nerves, ciliary neurotrophic factor differs biologically from nerve growth factor (NGF) by its much higher tissue concentration and apparent lack of internalization by peripheral nerve axons.  相似文献   

20.
The actions of neurotrophic factors on sensory neurons of the adult nodose ganglion were studied in vitro. The ganglia were explanted in an extracellular matrix-based gel that permitted observation of the growing axons. Neurotrophin-4 (NT-4) was a very efficient stimulator of outgrowth of axons from the nodose ganglion and had almost doubled the outgrowth length when this was analyzed after 2 days in culture. Brain-derived neurotrophic factor also stimulated outgrowth, but to a lesser degree, whereas NT-3 gave only weak stimulatory tendencies. Nerve growth factor and glial cell line-derived neurotrophic factor both lacked stimulatory effects. NT-4 is known to act via TrkB receptors, and the presence of these on growing nodose neurons was demonstrated immunohistochemically. In line with a Trk-mediated growth effect, the NT-4 stimulation was abolished by K252a, a selective inhibitor of neurotrophin receptor-associated tyrosine kinase activity. K252a had no effect on the unstimulated preparation. NT-4 treatment led to activation of the mitogen-activated protein kinase and inhibition of the latter pathway by PD98059 significantly reduced the NT-4 stimulated outgrowth, whereas the drug had no effect on the unstimulated growth. In conclusion, the data suggest that NT-4 can serve as a powerful growth factor for neurons of adult nodose ganglia and that the growth stimulation involves TrkB- and mitogen-activated protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号