首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N Sato  X Wang  M A Greer 《Cell calcium》1992,13(3):173-182
With 1.5 mM [Ca2+]e, 10 nM TRH induced a prompt high-amplitude burst of hormone secretion and an initial high-amplitude [Ca2+]i burst (first phase) followed by a sustained low-amplitude [Ca2+]i increment (second phase) in both tumor-derived GH4C1 and normal adenohypophyseal (AP) cells. With less than 2 microM [Ca2+]e, in both cell types the TRH-induced first phase rise in [Ca2+]i was suppressed 30% while the second phase rise was completely abolished; however, hormone secretion was inhibited only 20-30% in GH4C1 but greater than 80% in AP cells. Thapsigargin induced a first-phase rise in [Ca2+]i in AP cells equal to that induced by 10 nM TRH but only 20% as much first-phase hormone secretion. Blocking Ca2+ channels with nifedipine inhibited TRH-induced secretion in AP cells significantly more than in GH4C1 cells. Our data indicate that the TRH-induced first-phase spike in [Ca2+]i from intracellular Ca2+ stores may play a major transduction role in hormone secretion in GH4C1 cells but not in normal AP cells. Transduction mechanisms coupled to Ca2+ influx through Ca2+ channels in the plasmalemma are apparently a much more important component of TRH-induced secretion in normal than in tumor-derived pituitary cells.  相似文献   

2.
3.
Dopamine (DA) has dual actions (inhibitory and stimulatory) in the regulation of prolactin (PRL) release, depending on its concentration. To investigate the stimulatory effects of DA, perifused rat anterior pituitary cells were exposed to the highly-specific DA D2 receptor agonist, quinpirole hydrochloride (LY). Very low concentrations of LY (10(-12)-10(-10) M) stimulated PRL release and potentiated thyrotropin-releasing hormone (TRH)-induced PRL release. Higher concentrations of LY did not stimulate. Pretreatment with pertussis toxin (30 ng/ml, 24 h) completely abolished these effects of LY. The D2 receptor antagonist, metoclopramide, also blocked the potentiation by LY of TRH-induced PRL release. These data indicate that very low concentrations of dopamine stimulate PRL release via an interaction with a D2 receptor connected to a pertussis toxin-sensitive G protein.  相似文献   

4.
The objectives of this study were to determine: 1) if lactotropes from old rats, compared to those from young rats, secrete a greater amount of prolactin (PRL) per cell, 2) if the percentage of pituitary cells secreting PRL changes with age; and 3) how estradiol (E2), dopamine (DA), or thyrotropin-releasing hormone (TRH), or the combination of these factors influences both of these parameters in old rats. To meet these objectives we used the reverse hemolytic plaque assay (RHPA), because this method allows us to determine both the percentage of pituitary cells secreting prolactin during the experimental period and the amount of hormone released by each secreting pituitary cell. These parameters were measured in young (2-3 mo old) or old (17-19 mo old) female Sprague-Dawley rats. Animals were ovariectomized (OVX) for 10 days or OVX for 1 wk and then treated with E2 for 3 days. Rats were killed, anterior pituitaries were removed, and cells were enzymatically dispersed and prepared for use in the RHPA. Pituitary cells were treated in vitro with vehicle, DA, or PRL, old OVX and E2-treated rats exhibited a greater percentage of secretory cells than young at both 1 and 2 h of incubation. Administration of E2 increased the percentage of cells secreting PRL in both young and old rats. DA reduced the percentage of cells secreting PRL at the highest dose tested (10(-5) M) regardless of age or E2 status following incubation for 1 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.  相似文献   

6.
Continuously superfused rat anterior pituitary cells were used to study the effects of exogenous prostaglandins (PGs) and thromboxanes (TXs) on the secretion of prolactin (PRL). No change in hormone release was observed upon superfusion with TXB2 (10(-5)M) or the TX synthesis inhibitor, imidazole (1.5 mM). PGs A2, B2, D2, E1, E2, F1 alpha, F2 alpha, and endoperoxide analogs, U-44069 and U-46619, also had no effect on PRL secretion (all at 10(-5)M). In contrast 10(-5)M PGI2 was repeatedly found to stimulate PRL release to a level at least 125% above control, while producing no apparent change in the amount of hormone secreted in response to TRH. Somatostatin (SRIF), at a dose of 10(-6)M, maximally inhibited TRH-induced PRL output, but failed to alter the PRL response to PGI2. These studies indicate that PGI2 may have a direct effect on the anterior pituitary to modify PRL secretion.  相似文献   

7.
Effects of VIP, TRH, dopamine and GABA on the secretion of prolactin (PRL) from rat pituitary cells were studied in vitro with a sensitive superfusion method. Dispersed anterior pituitary cells were placed on a Sephadex G-25 column and continuously eluted with KRBG buffer. Infusion of TRH (10(-11) - 10(-8)M) and VIP (10(-9) - 10(-6)M) resulted in a dose-related increase in PRL release. LHRH (10(-8) - 10(-5)M) had no effect on PRL release. On the other hand, infusion of dopamine (10(-9) - 10(-6)M) and GABA (10(-8) - 10(-4)M) suppressed not only the basal PRL release from dispersed pituitary cells but also the PRL response to TRH and VIP. The potency of TRH to stimulate PRL release is greater than that of VIP, and the potency of dopamine to inhibit PRL secretion is stronger than that of GABA on a molar basis. These results indicate that TRH and VIP have a stimulating role whereas dopamine and GABA have an inhibitory role in the regulation of PRL secretion at the pituitary level in the rat.  相似文献   

8.
K Cheng  W W Chan  R Arias  A Barreto  B Butler 《Life sciences》1992,51(25):1957-1967
In GH3 cells and other clonal rat pituitary tumor cells, TRH has been shown to mediate its effects on prolactin release via a rise of cytosolic Ca2+ and activation of protein kinase C. In this study, we examined the role of protein kinase C in TRH-stimulated prolactin release from female rat primary pituitary cell culture. Both TRH and PMA stimulated prolactin release in a dose-dependent manner. When present together at maximal concentrations, TRH and PMA produced an effect which was slightly less than additive. Pretreatment of rat pituitary cells with 10(-6) M PMA for 24 hrs completely down-regulated protein kinase C, since such PMA-pretreated cells did not release prolactin in response to a second dose of PMA. Interestingly, protein kinase C down-regulation had no effect on TRH-induced prolactin release from rat pituitary cells. In contrast, PMA-pretreated GH3 cells did not respond to a subsequent stimulation by either PMA or TRH. Pretreatment of rat pituitary cells with TRH (10(-7) M, 24 hrs) inhibited the subsequent response to TRH, but not PMA. Forskolin, an adenylate cyclase activator, stimulated prolactin release by itself and in a synergistic manner when incubated together with TRH or PMA. The synergistic effects of forskolin on prolactin release was greater in the presence of PMA than TRH. Down-regulation of protein kinase C by PMA pretreatment abolished the synergistic effect produced by PMA and forskolin but had no effect on those generated by TRH and forskolin. sn-1,2-Dioctanylglycerol (DOG) pretreatment attenuated the subsequent response to DOG and PMA but not TRH. The effect of TRH, but not PMA, on prolactin release required the presence of extracellular Ca2+. In conclusion, the mechanism by which TRH causes prolactin release from rat primary pituitary cells is different from that of GH3 cells; the former is a protein kinase C-independent process whereas the latter is at least partially dependent upon the activation of protein kinase C.  相似文献   

9.
Superfused dispersed cells respond rapidly to 2- to 10-min pulses of TRH (10(-10) to 10(-7) M) in a dose-dependent manner. The effects of decreasing the stimulus duration can be overcome by a proportional increase in concentration of TRH. A TRH stimulus of 10 min or greater duration results in a sharp peak in TSH secretion followed by a lower plateau. Somatostatin (10(-8) M inhibits the response to TRH (t X 10(-9) M). T3 (2.0 microgram/dl) inhibits TRH-induced TSH secretion by superfused pituitary fragments, but not by dispersed cells. Corticosterone (50 microgram/dl), however, inhibits crude CRF-induced ACTH secretion by such cells.  相似文献   

10.
Thyrotropin-releasing hormone (TRH) stimulates biphasic prolactin (PRL) secretion from rat pituitary GH3 cells. The pretreatment of cells with EGTA (100 microM) plus arachidonic acid (15 microM), a condition which decreased TRH-responsive intracellular Ca2+ pools, eliminated the activity of TRH on burst PRL secretion (2 min) but did not alter that on sustained PRL secretion (30 min). However, the treatment of cells with EGTA, arachidonic acid and H-7 (300 microM), a potent inhibitor of protein kinase C (PKC), almost completely suppressed the activity of TRH for sustained PRL secretion. In cells down-modulated for PKC, TRH abolished this Ca2(+)-independent sustained PRL secretion. These results suggest that TRH acts through a separate, Ca2(+)-independent secretory mechanism, besides by modulating the Ca2(+)-dependent mechanism and that PKC is involved in this Ca2(+)-independent secretory pathway.  相似文献   

11.
Kisspeptins are peptide hormones encoded by the KiSS-1 gene, and act as the principal positive regulator of the reproductive axis by directly stimulating gonadotropin-releasing hormone (GnRH) neuron activity. We recently observed that kisspeptin-10 (the minimal kisspeptin sequence necessary for receptor activation) also has a direct stimulating effect on luteinizing hormone (LH) secretion in bovine anterior pituitary (AP) cells. In the present study, we evaluated the direct effect of kisspeptin-10 on the secretion of other pituitary hormones, growth hormone (GH) and prolactin (PRL), from bovine AP cells. The AP cells, which were prepared from 1- or 8-month-old male calves, were incubated for 2h with the peptides. Kisspeptin-10 at 100 nM (P<0.05), 1000 nM (P<0.01) and 10,000 nM (P<0.01), but not at 10 nM, significantly stimulated GH secretion from the AP cells of 1-month-old calves, while in 8-month-old calves it was significantly (P<0.05) stimulated at 1000 nM (P<0.01) and 10,000 nM (P<0.01), but not at 10nM and 100 nM. The response of GH to 100 nM (P<0.01), 1000 nM (P<0.05) and 10,000 nM (P<0.01) kisspeptin-10 in the AP cells of 1-month-old calves was significantly greater than in those of 8-month-old calves. All tested doses of kisspeptin-10 had no effect on PRL secretion from AP cells of 1-month-old calves. However, 1000 nM (P<0.05) and 10,000 nM (P<0.01), but not lower concentrations, of kisspeptin-10 significantly stimulated PRL secretion from the AP cells of 8-month-old calves. The present study is, as far as we know, the first to examine the direct actions of kisspeptin on the secretion of GH and PRL from the bovine pituitary gland. Further studies are necessary to evaluate the importance of multiple actions of kisspeptin on the pituitary of various animals in vivo.  相似文献   

12.
Prolactin (PRL) release was studied in female rats during midlactation using pharmacologic manipulations designed to mimic the hypothalamic effects of suckling. In the first experiment pituitary dopamine (DA) receptors were blocked by sulpiride (10 micrograms/rat i.v.). One hour later, thyrotropin-releasing hormone (TRH, 1.0 micrograms/rat i.v.) was given to induce PRL release. TRH released significantly more PRL following DA antagonism than when no DA antagonism was produced, suggesting that DA receptor blockade increased the sensitivity of the AP to TRH. In a second experiment, VIP (25 micrograms/rat) increased plasma prolactin 3-4 fold but this effect was not enhanced significantly by prior dopamine antagonism with sulpiride. We conclude that dopamine antagonism enhances the PRL releasing effect of TRH but not VIP in lactating rats.  相似文献   

13.
Activation of pituitary angiotensin (ANG II) type 1 receptors (AT1) mobilizes intracellular Ca2+, resulting in increased prolactin secretion. We first assessed desensitization of AT1 receptors by testing ANG II-induced intracellular Ca2+ concentration ([Ca2+](i)) response in rat anterior pituitary cells. A period as short as 1 min with 10(-7) M ANG II was effective in producing desensitization (remaining response was 66.8 +/- 2.1% of nondesensitized cells). Desensitization was a concentration-related event (EC(50): 1.1 nM). Although partial recovery was obtained 15 min after removal of ANG II, full response could not be achieved even after 4 h (77.6 +/- 2.4%). Experiments with 5 x 10(-7) M ionomycin indicated that intracellular Ca2+ stores of desensitized cells had already recovered when desensitization was still significant. The thyrotropin-releasing hormone (TRH)-induced intracellular Ca2+ peak was attenuated in the ANG II-pretreated group. ANG II pretreatment also desensitized ANG II- and TRH-induced inositol phosphate generation (72.8 +/- 3.5 and 69.6 +/- 6.1%, respectively, for inositol triphosphate) and prolactin secretion (53.4 +/- 2.3 and 65.1 +/- 7.2%), effects independent of PKC activation. We conclude that, in pituitary cells, inositol triphosphate formation, [Ca2+](i) mobilization, and prolactin release in response to ANG II undergo rapid, long-lasting, homologous and heterologous desensitization.  相似文献   

14.
Dispersed rat anterior pituitary cells were allowed to reassociate into spherical aggregates by gyrotory shaking in serum-free chemically defined culture medium. When aggregates were superfused after being cultured for 5 days in this medium, stimulation of PRL release by TRH, VIP, angiotensin II and the beta-adrenergic agonist isoproterenol was comparable to that of aggregates cultured in serum-supplemented culture medium. Addition to the serum-free medium of 80 nM dexamethasone (Dex) resulted in a significant enhancement of the stimulation of PRL release by TRH, VIP and angiotensin II but not of the stimulation of PRL release by isoproterenol. Dex also failed to influence the inhibition of PRL release by 10 min exposure to 10 nM dopamine (DA). However, Dex significantly enhanced the post-DA rebound secretion of PRL. After 3 weeks in culture Dex provoked a similar potentiation of the response to angiotensin as at 5 days in culture but it abolished almost completely the stimulatory effect of isoproterenol. It is concluded that pituitary cell aggregates cultured in defined serum-free medium are a reliable system to study the multifactorial control of PRL release. The data show that peptidergic, dopaminergic and beta-adrenergic control at the pituitary level is differentially modulated by corticosteroids.  相似文献   

15.
J G Schofield 《FEBS letters》1983,159(1-2):79-82
The fluorescent calcium indicator 'quin2' was used to demonstrate changes in cytoplasmic calcium concentrations in bovine anterior pituitary cells. The basal calcium concentration was 0.21 +/- 0.02 microM (mean of 4 cell preparations). Thyroliberin (TRH) (10(-10) - 10(-6) M) rapidly and at the higher concentrations transiently increased the concentration. Dopamine (10(-10) - 10(-7) M) decreased the concentration transiently and more slowly. At 10(-5) M, dopamine prevented the increase in calcium concentration caused by 10(-9) M TRH, and partially inhibited the increase caused by higher concentrations of the peptide. The data support the hypothesis that calcium is the second messenger for TRH, and suggest that dopamine inhibits TRH-induced prolactin secretion by preventing the calcium concentration from exceeding the level necessary to increase secretion.  相似文献   

16.
17.
Thyrotropin-releasing hormone (TRH) stimulates the prolactin (PRL) release from normal lactotrophs or tumoral cell line GH3. This effect is not observed in many patients with PRL-secreting tumors. We examined in vitro the PRL response to TRH on cultured human PRL-secreting tumor cells (n = 10) maintained on an extracellular matrix in a minimum medium (DME + insulin, transferrin, selenium). Addition of 10(-8) M TRH to 4 X 10(4) cells produced either no stimulation of PRL release (n = 6) or a mild PRL rise of 32 +/- (SE) 11% (n = 4) when measured 1, 2 and 24 h after TRH addition. When tumor cells were preincubated for 24 h with 5 X 10(-11) M bromocriptine, a 47 +/- 4% inhibition of PRL release was obtained. When TRH (10(-8) M) was added, 24 h after bromocriptine, it produced a 85 +/- 25% increase of PRL release (n = 8). This stimulation of PRL release was evident when measured 1 h after TRH addition and persisted for 48 h. The half maximal stimulatory effect of TRH was 2 X 10(-10) M and the maximal effect was achieved at 10(-9) M TRH. When tumor cells were pretreated with various concentrations of triiodothyronine (T3), the PRL release was inhibited by 50% with 5 X 10(-11) M T3 and by 80% with 10(-9) M T3. Successive addition of TRH (10(-8) M) was unable to stimulate PRL release at any concentration of T3. The addition of 10(-8) M estradiol for up to 16 days either stimulated or had no effect upon the PRL basal release according to the cases. In all cases tested (n = 4), preincubation of the tumor cells with estradiol (10(-8) M) modified the inhibition of PRL release induced by bromocriptine with a half-inhibitory concentration displaced from 3 X 10(-11) M (control) to 3 X 10(-10) M (estradiol). These data demonstrate that the absence of TRH effect observed in some human prolactinomas is not linked to the absence of TRH receptor in such tumor cells. TRH responsiveness is always restored in the presence of dopamine (DA) at appropriate concentration. This TRH/DA interaction seems specific while not observed under T3 inhibition of PRL. Furthermore, estrogens, while presenting a variable stimulatory effect upon basal PRL, antagonize the dopaminergic inhibition of PRL release.  相似文献   

18.
Prolactin (PRL) secretion by monolayer cultures of turkey anterior pituitary cells was significantly increased (up to 44-fold) by vasoactive intestinal peptide (VIP), arginine vasotocin (AVT), and by an extract of turkey hypothalami (HE). Several other neuropeptides (including thyrotropin-releasing hormone) and neurotransmitters were ineffective in influencing PRL secretion at doses up to 10(-6) M. The dynamic PRL response to HE and VIP was studied using superfused pituitary cells attached to microcarrier beads. HE, administered in 30-min pulses, resulted in a significant, dose-related increase in PRL secretion from a basal secretion rate of 2.32 ng/min/10(7) cells to a peak secretion rate of 127.13 ng/min/10(7) cells at the highest dose of HE tested (1 mg tissue-equivalent weight/ml). VIP significantly increased PRL secretion at all doses studied (from 10(-10) to 10(-6) M), with 10(-8) M VIP producing a response similar to that observed with 1 mg/ml HE. A highly significant (P less than 0.001) linear relationship was demonstrated between the log-dose of VIP administered and peak PRL secretion rate. These studies suggest that VIP, but not TRH, may be a physiological stimulus for PRL release in the turkey.  相似文献   

19.
Previous studies in Rhesus monkeys have demonstrated that a dopamine (DA) infusion rate of 0.1 microgram/kg X min induces peripheral DA levels similar to those measured in hypophysial stalk blood and normalizes serum prolactin (PRL) levels in stalk-transected animals. We therefore examined the effect of such DA infusion rate on basal and thyrotropin-releasing hormone (TRH)-stimulated PRL secretion in both normal cycling women and women with pathological hyperprolactinemia. 0.1 microgram/kg X min DA infusion fully normalized PRL serum levels in 8 normal cycling women whose endogenous catecholamine synthesis had been inhibited by alpha-methyl-p-tyrosine (AMPT) pretreatment. Furthermore, DA significantly reduced, but did not abolish, the rise in serum PRL concentrations induced by both acute 500 mg AMPT administration and 200 micrograms intravenous TRH injection in normal women. A significant reduction in serum PRL levels in response to 0.1 microgram/kg X min DA, similar to that observed in normal cycling women when expressed as a percentage of baseline PRL, was documented in 13 amenorrheic patients with TRH-unresponsive pathological hyperprolactinemia. However, a marked rise was observed in the serum PRL of the same patients when TRH was administered during the course of a 0.1-microgram/kg X min DA infusion. The PRL response to TRH was significantly higher during DA than in basal conditions in hyperprolactinemic patients, irrespective of whether this was expressed as an absolute increase (delta PRL 94.4 +/- 14.2 vs. 17.8 +/- 14.1 ng/ml, p less than 0.002) or a percent increase (delta% PRL 155.4 +/- 18.9 vs. 17.9 +/- 7.1, p less than 0.0005), and there was a significant linear correlation between the PRL decrements induced by DA and the subsequent PRL responses to TRH. These data would seem to show that the 0.1-microgram/kg X min DA infusion rate reduces basal PRL secretion and blunts, but does not abolish, the PRL response to both TRH and acute AMPT administration. The strong reduction in PRL secretion and the restoration of the PRL response to TRH by 0.1 microgram/kg X min DA infusion in high majority of hyperprolactinemic patients, seem to indicate that both PRL hypersecretion and abnormal PRL response to TRH in women with pathological hyperprolactinemia are due to a relative DA deficiency at the DA receptor site of the pituitary lactotrophs.  相似文献   

20.
To study the effect of human beta-endorphin (beta h-End) on pituitary response to gonadotropin-releasing hormone (LH-RH) and thyrotropin-releasing hormone (TRH) in vitro, we used dispersed rat pituitary cells. When beta h-End (10(-7) M) was simultaneously added along with LH-RH, its stimulatory effect was blocked and naloxone (NAL, 10(-5) M) did not reverse the beta h-End inhibitory effect. NAL alone elicited an increase in LH release, but in the presence of both stimulants (LH-RH and NAL), LH secretion was lower than that observed with LH-RH alone. TRH stimulatory activity of TSH and PRL secretion was blunted by the presence of beta h-End (10(-7) M) and was not reversed by NAL (10(-5) and 10(-3) M). These data suggest that beta h-End directly blocks the LH, TSH- and PRL-secreting activity of both LH-RH and TRH at the pituitary level. This beta h-End effect is not reversed by the specific opiate receptor blocker NAL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号