首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence comparisons were made for 738-bp of mtDNA cloned from seven greenbug, Schizaphis graminum, biotypes (B, C, E, F, G, H and I) obtained from laboratory colonies maintained by USDA-ARS, Stillwater, OK. These sequences include parts of the genes for 16S ribosomal subunit (16S rRNA), tRNAleu, tRNAser, cytochrome b (cytb) and NADH dehydrogenase (ND) subunits one and four. Sequence data revealed considerable variation in 86 (12%) nucleotide sites over the 738-bp sequenced among the seven greenbug biotypes. Nucleotide invariance was observed within the seven greenbug biotypes from both the laboratory colonies and field collected biotype E greenbugs from Kansas, Nebraska, Oklahoma, and Texas.  相似文献   

2.
In this study, we infer the phylogenetic relationships within commercial shrimp using sequence data from a novel mitochondrial marker consisting of an approximately 530-bp region of the 16S ribosomal RNA (rRNA)/transfer RNA (tRNA)Val genes compared with two other mitochondrial genes: 16S rRNA and cytochrome c oxidase I (COI). All three mitochondrial markers were considerably AT rich, exhibiting values up to 78.2% for the species Penaeus monodon in the 16S rRNA/tRNAVal genes, notably higher than the average among other Malacostracan mitochondrial genomes. Unlike the 16S rRNA and COI genes, the 16S rRNA/tRNAVal marker evidenced that Parapenaeus is more closely related to Metapenaeus than to Solenocera, a result that seems to be more in agreement with the taxonomic status of these genera. To our knowledge, our study using the 16S rRNA/tRNAVal gene as a marker for phylogenetic analysis offers the first genetic evidence to confirm that Pleoticus muelleri and Solenocera agassizi constitute a separate group and that they are more related to each other than to genera belonging to the family Penaeidae. The 16S rRNA/tRNAVal region was also found to contain more variable sites (56%) than the other two regions studied (33.4% for the 16S rRNA region and 42.7% for the COI region). The presence of more variable sites in the 16S rRNA/tRNAVal marker allowed the interspecific differentiation of all 19 species examined. This is especially useful at the commercial level for the identification of a large number of shrimp species, particularly when the lack of morphological characteristics prevents their differentiation.  相似文献   

3.
Abstract 1 The greenbug Schizaphis graminum (Rondani) is a serious pest of Sorghum bicolor L. and small grains in the Southern Plains of the U.S.A. Use of resistant cultivars, the major greenbug management strategy, has been challenged by the rapid development of new greenbug biotypes that overcome plant resistance. 2 We used a high‐throughput amplified fragment length polymorphism (AFLP) fingerprinting method to examine genetic divergence among eight greenbug biotypes (B, C, E, G, I and K, New York and South Carolina). Clustering analysis based on 1775 scored AFLP markers clearly showed that biotypes (C, E, I and K), which are able to infest sorghum fields, share more common polymorphisms among themselves than with other biotypes. 3 This result suggests that common genetic factors exist among these biotypes, enabling them to predominate and thrive in monoculture crops. Our study demonstrated the sensitivity of AFLP in obtaining large quantities of biotype‐associated polymorphic information across the entire greenbug genome.  相似文献   

4.
Eleusine indica is one of the most common weed species found in agricultural land worldwide. Although herbicide-glyphosate provides good control of the weed, its frequent uses has led to abundant reported cases of resistance. Hence, the development of genetic markers for quick detection of glyphosate-resistance in E. indica population is imperative for the control and management of the weed. In this study, a total of 14 specific random amplified polymorphic DNA (RAPD) markers were identified and two of the markers, namely S4R727 and S26R6976 were further sequence characterized. Sequence alignment revealed that marker S4R727 showing a 12-bp nucleotides deletion in resistant biotypes, while marker S26R6976 contained a 167-bp nucleotides insertion in the resistant biotypes. Based on these sequence differences, three pairs of new sequence characterized amplified region (SCAR) primers were developed. The specificity of these primer pairs were further validated with genomic DNA extracted from ten individual plants of one glyphosate-susceptible and five glyphosate-resistant (R2, R4, R6, R8 and R11) populations. The resulting RAPD–SCAR markers provided the basis for assessing genetic diversity between glyphosate-susceptible and -resistant E. indica biotypes, as well for the identification of genetic locus link to glyphosate-resistance event in the species.  相似文献   

5.
6.
Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNAGlu(UUC), tRNALys(UUU), tRNAVal(UAC), and tRNAAla(GGC). Five amplicons contained tRNAGlu(UUC) combined with two additional tRNA genes, including tRNALys(UUU), tRNAVal(UAC), or tRNAAla(UGC). Five amplicons contained tRNAIle(GAU) and tRNAAla(UGC). Two amplicons contained tRNAGlu(UUC) and tRNAAla(UGC). Two different isoacceptor tRNAAla genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNAGlu(UUC)-tRNAVal(UAC)-tRNAAla(UGC) and tRNAGlu(UUC)-tRNAAla(UGC) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.  相似文献   

7.
According to the conserved sequences flanking the 3′ end of the 16S and the 5′ end of the 23S rDNAs, PCR primers were designed, and the 16S-23S rDNA intergenic spacers (IGSs) of two strains of Vibrio vulnificus were amplified by PCR and cloned into pGEM-T vector. Different clones were selected to be sequenced and the sequences were analyzed with BLAST and the software DNAstar. Analyses of the IGS sequences suggested that the strain ZSU006 contains five types of polymorphic 16S-23S rDNA intergenic spacers, namely, IGSGLAV, IGSGLV, IGSlA, IGSG and IGSA; while the strain CG021 has the same types of IGSs except lacking IGSA. Among these five IGS types, IGSGLAV is the biggest type, including the gene cluster of tRNAGlu - tRNALys - tRNAAla - tRNAVal; IGSGLV includes that of tRNAGlu-tRNALys-tRNAVal; IGSAG, tRNAAla-tRNAGlu; IGSIA, tRNAIle-tRNAAla; IGSG, tRNAGlu and IGSA, tRNAAla. Intraspecies multiple alignment of all the IGS sequences of these two strains with those of V. vulnificus ATCC27562 available at GenBank revealed several highly conserved sequence blocks in the non-coding regions flanking the tRNA genes within all of strains, most notably the first 40 and last 200 nucleotides, which can be targeted to design species-specific PCR primers or detection probes. The structural variations of the 16S-23S rDNA intergenic spacers lay a foundation for developing diagnostic methods for V. vulnificus.  相似文献   

8.
Mung bean nuclease treatment of 16S-23S ribosomal DNA intergenic transcribed spacers (ITS) amplified from several strains of the six species of the Bacillus cereus group showed that B. anthracis Davis TE702 and B. mycoides G2 have other intermediate fragments in addition to the 220- and 550-bp homoduplex fragments typical of the B. cereus group. Long and intermediate homoduplex ITS fragments from strains Davis TE702 and G2 and from another 19 strains of the six species were sequenced. Two main types of ITS were found, either with two tRNA genes (tRNAIle and tRNAAla) or without any at all. Strain Davis TE702 harbors an additional ITS with a single tRNA gene, a hybrid between the tRNAIle and tRNAAla genes, suggesting that a recombination event rather than a deletion generated the single tDNA-containing ITS. Strain G2 showed an additional ITS of intermediate length with no tDNA and no similarity to other known sequences. Neighbor-joining analysis of tDNA-containing long ITS indicated that B. cereus and B. thuringiensis represent a single clade. Three signature sequences discriminated B. anthracis from B. cereus and B. thuringiensis, indicating that the anthrax agent started evolving separately from the related clades of the B. cereus group. B. mycoides and B. weienstephanensis were very closely related, while B. pseudomycoides appeared the most distant species.  相似文献   

9.
Significant amounts of three tRNAs are associated with the 70 S RNA of avian myeloblastosis virus (AMV). The temperatures at which they are half dissociated from the 70 S RNA in 50 mM NaCl and their respective quantities relative to 35 S RNA are: tRNAArg, 51°C, 1.6; tRNALys, 57°C, 0.7 and tRNATrp, 76°C, 1.0. Possible functions for the non-primer tRNAs (tRNAArg and tRNALys) were evaluated by determining the effect of their thermal dissociation on: (a) conversion of 70 S to 35 S RNA, (b) capacity of 70 S and/or 35 S RNA to be translated in vitro, and (c) capacity of 70 S and/or 35 S RNA to be reverse transcribed in vitro. Conversion of 70 S to 35 S RNA occurred with a tm of 56°C and is consistent with the hypothesis that tRNALys might be involved in joining two 35 S RNA subunits to form the 70 S RNA complex. There was no indication that the association of either tRNAArg or tRNALys influenced the rate or quality of translation of 70 S or 35 S RNA. A decrease in the rate at which 70 S RNA is transcribed occurs in parallel with the dissociation of tRNAArg and tRNALys.  相似文献   

10.
《Gene》1997,193(1):59-63
Polymerase chain reaction (PCR) was used to amplify a fragment of DNA encoding a tRNA that recognizes the abundant CUC leucine codon from the chromosome of Streptomyces coelicolor. Sequence analysis of the gene, designated leuU, indicated that it codes for a tRNA 88 nucleotides in length that shares 75% identity with the Escherichia coli tRNALeuCUC, while it shares only 65% identity with the only other sequenced leucyl tRNA from S. coelicolor, the bldA encoded tRNALeuUUA. Accumulation of the leuU tRNA was examined by Northern blot analysis and shown to be present at constant levels throughout growth in contrast to the bldA-encoded tRNA which shows a temporal pattern of accumulation [Leskiw et al., 1993. J. Bacteriol., 175, 1995–2005].  相似文献   

11.
Transfer RNA from Escherichia coli C6, a Met, Cys, relA mutant, was previously shown to contain an altered tRNAIle which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676–7683). We now report the purification of this altered tRNAIle and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNAIle purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNAIle (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl ∼ AMP · Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNAIle bound more efficiently to its synthetase compared to normal tRNAIle. Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNAIle contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNAIle contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNAIle without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNAIle has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNAIle from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNAIle for aminoacylation is discussed.  相似文献   

12.
Purified HeLa cell tRNA methylases have been used for site-specific methylations of Escherichia coli formylmethionine transfer ribonucleic acid (tRNAfMet). Guanine-N2-methylase catalyzed the methylation of a specific guanine residue (G27) and adenine-1-methylase that of a specific adenine residue (A59). The combined action of both of these enzymes leads to a total incorporation of two methyl groups and results in the methylation of both G27 and A59.The effect of introducing additional methyl groups on the function of tRNA has been studied by a comparison in vitro of the biological properties of tRNAfMet and enzymically methylated tRNAfMet. It was found that none of the following properties of E. coli tRNAfMet are altered to any significant extent by methylation: (a) rate, extent, and specificity of aminoacylation, (b) ability of methionyl-tRNA to be enzymically formylated, and (c) ability of formylmethionyl-tRNA to initiate protein synthesis in cell-free extracts of E. coli in the presence of f2 RNA as messenger. Also, the temperature versus absorbance profile of the doubly methylated tRNAfmet was virtually identical to that of the E. coli tRNAfMet, and enzymically methylated tRNAfmet resembled tRNAfMet in that both were resistant to deacylation by E. coli, N-acylaminoacyl-tRNA hydrolase.  相似文献   

13.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNAAla and tRNAIle, which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

14.
Takafumi Nakano 《ZooKeys》2016,(553):33-51
A new quadrannulate species of Orobdella Oka, 1895, Orobdella naraharaetmagarum sp. n., from the mountainous region of western Honshu, Japan is described. Orobdella naraharaetmagarum is a small species with a body length of less than 5 cm. Phylogenetic analyses using nuclear 18S rRNA and histone H3, as well as mitochondrial cytochrome c oxidase subunit I, tRNACys, tRNAMet, 12S rRNA, tRNAVal, 16S rRNA, tRNALeu and NADH dehydrogenase subunit 1 markers indicated that the present new species is the sister species of the quadrannulate Orobdella esulcata Nakano, 2010. Furthermore, mitochondrial DNA genealogy within Orobdella naraharaetmagarum demonstrated that this new species is divided into eastern and western lineages.  相似文献   

15.
Hybridization studies of Euglena chloroplast 125I-labeled tRNAs to restriction fragments of Euglena chloroplast DNA have shown that the spacer between the 16S and 23S rRNA genes, in two and possibly all three of the ribosomal DNA units, contains genes for tRNAIle and tRNAAla, whereas a tRNA gene (for either tRNATrp or tRNAGlu) is located before probably all four 16S rRNA genes present on the chloroplast DNA molecule.  相似文献   

16.
17.
The yeast MTO1 gene encodes an evolutionarily conserved protein for the biosynthesis of the 5-carboxymethylaminomethyl group of cmnm5s2U in the wobble position of mitochondrial tRNA. However, mto1 null mutant expressed the respiratory deficient phenotype only when coupled with the C1409G mutation of mitochondrial 15S rRNA. To further understand the role of MTO1 in mitochondrial RNA metabolism, the yeast mto1 null mutants carrying either wild-type (PS) or 15S rRNA C1409G allele (PR) have been characterized by examining the steady-state levels, aminoacylation capacity of mitochondrial tRNA, mitochondrial gene expression and petite formation. The steady-state levels of tRNALys, tRNAGlu, tRNAGln, tRNALeu, tRNAGly, tRNAArg and tRNAPhe were decreased significantly while those of tRNAMet and tRNAHis were not affected in the mto1 strains carrying the PS allele. Strikingly, the combination of the mto1 and C1409G mutations gave rise to the synthetic phenotype for some of the tRNAs, especially in tRNALys, tRNAMet and tRNAPhe. Furthermore, the mto1 strains exhibited a marked reduction in the aminoacylation levels of mitochondrial tRNALys, tRNALeu, tRNAArg but almost no effect in those of tRNAHis. In addition, the steady-state levels of mitochondrial COX1, COX2, COX3, ATP6 and ATP9 mRNA were markedly decreased in mto1 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO1 gene caused the instability of mitochondrial tRNAs and mRNAs and an impairment of aminoacylation of mitochondrial tRNAs. Consequently, the deletion of MTO1 gene acts in synergy with the 15S rRNA C1409G mutation, leading to the loss of COX1 synthesis and subsequent respiratory deficient phenotype.  相似文献   

18.
Takafumi Nakano 《ZooKeys》2014,(445):57-76
A new quadrannulate species of Orobdella, Orobdella masaakikuroiwai sp. n., from the mountainous region of central Honshu, Japan is described. This is only the second small species known within this genus, with a body length of less than 4 cm for mature individuals. Phylogenetic analyses using nuclear 18S rDNA and histone H3 as well as mitochondrial COI, tRNACys, tRNAMet, 12S, tRNAVal, 16S, and ND1 markers showed that Orobdella masaakikuroiwai sp. n. is the sister species of the quadrannulate Orobdella whitmani Oka, 1895. Phylogenetic relationships within Orobdella masaakikuroiwai sp. n. conducted using mitochondrial markers reveled a distinction between eastern and western phylogroups.  相似文献   

19.
The greenbug aphid, Schizaphis graminum (Rondani) was introduced into the United States in the late 1880s, and quickly was established as a pest of wheat, oat, and barley. Sorghum was also a host, but it was not until 1968 that greenbug became a serious pest of it as well. The most effective control method is the planting of resistant varieties; however, the occurrence of greenbug biotypes has hampered the development and use of plant resistance as a management technique. Until the 1990s, the evolutionary status of greenbug biotypes was obscure. Four mtDNA cytochrome oxidase subunit I (COI) haplotypes were previously identified, suggesting that S. graminum sensu lato was comprised of host-adapted races. To elucidate the current evolutionary and taxonomic status of the greenbug and its biotypes, two nuclear genes and introns were sequenced; cytochrome c (CytC) and elongation factor 1-α (EF1-α). Phylogenetic analysis of CytC sequences were in complete agreement with COI sequences and demonstrated three distinct evolutionary lineages in S. graminum. EF1-α DNA sequences were in partial agreement with COI and CytC sequences, and demonstrated two distinct evolutionary lineages. Host-adapted races in greenbug are sympatric and appear reproductively isolated. Agricultural biotypes in S. graminum likely arose by genetic recombination via meiosis during sexual reproduction within host-races. The 1968 greenbug outbreak on sorghum was the result of the introduction of a host race adapted to sorghum, and not selection by host resistance genes in crops.  相似文献   

20.
Chromosomal regions of sorghum, Sorghum bicolor (L.) Moench, conferring resistance to greenbug, Schizaphis graminum (Rondani), biotypes C, E, I, and K from four resistance sources were evaluated by restriction fragment-length polymorphism (RFLP) analysis. At least nine loci, dispersed on eight linkage groups, were implicated in affecting sorghum resistance to greenbug. The nine loci were named according to the genus of the host plant (Sorghum) and greenbug (Schizaphis graminum). Most resistance loci were additive or incompletely dominant. Several digenic interactions were identified, and in each case, these nonadditive interactions accounted for a greater portion of the resistance phenotype than did independently acting loci. One locus in three of the four sorghum crosses appeared responsible for a large portion of resistance to greenbug biotypes C and E. None of the loci identified were effective against all biotypes studied. Correspondingly, the RFLP results indicated resistance from disparate sorghums may be a consequence of allelic variation at particular loci. To prove this, it will be necessary to fine map and clone genes for resistance to greenbug from various sorghum sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号