首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of hammerhead ribozymes in S. cerevisiae was assessed using two ribozymes that were designed to intramolecularly attack the hepatitis B viral X mRNA. The ribozymes effectively suppressed the expression of the X-lacZ fusion gene, when they were inserted at the 5' end of the X mRNA. The ribozymes cleaved the target RNA efficiently at the targeted phosphodiester bond, but the inactive mutants carrying G5-to-A substitution in the core did not, as the total RNA preparations of yeast extracts was assayed by primer extension. These G5A mutants, however, exerted the suppression as effectively as the wild-type ribozymes. The results, with several mutations introduced to a ribozyme, suggested that either mere formation of hammerhead-like structures with the three stems, or the formation of any two stems, could inhibit translation. Thus, the hammerhead-like structures, leading to cleavage or not, could effectively suppress translation, especially when formed around the initiation codon. The G5-to-A and U7-to-G mutations and replacement of the stem-II hairpin tetraloop did not appear to affect the formation of the inhibitory structure(s). The inhibition that was observed when stems I and III were directly connected without a loop or with a stem II hairpin was completely relieved when they were connected with only the loop of stem II (not containing the stem portion).  相似文献   

2.
Functional dissection of adenovirus VAI RNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
During the course of adenovirus infection, the VAI RNA protects the translation apparatus of host cells by preventing the activation of host double-stranded RNA-activated protein kinase, which phosphorylates and thereby inactivates the protein synthesis initiation factor eIF-2. In the absence of VAI RNA, protein synthesis is drastically inhibited at late times in infected cells. The experimentally derived secondary structure of VAI RNA consists of two extended base-paired regions, stems I and III, which are joined by a short base-paired region, stem II, at the center. Stems I and II are joined by a small loop, A, and stem III contains a hairpin loop, B. At the center of the molecule and at the 3' side, stems II and III are connected by a short stem-loop (stem IV and hairpin loop C). A fourth, minor loop, D, exists between stems II and IV. To determine sequences and domains critical for function within this VAI RNA structure, we have constructed adenovirus mutants with linker-scan substitution mutations in defined regions of the molecule. Cells infected with these mutants were analyzed for polypeptide synthesis, virus yield, and eIF-2 alpha kinase activity. Our results showed that disruption of base-paired regions in the distal parts of the longest stems, I and III, did not affect function, whereas mutations causing structural perturbations in the central part of the molecule containing stem II, the proximal part of stem III, and the central short stem-loop led to loss of function. Surprisingly, one substitution mutant, sub742, although dramatically perturbing the integrity of the structure of this central portion, showed a wild-type phenotype, suggesting that an RNA with an alternate secondary structure is functional. On the basis of sensitivity to single-strand-specific RNases, we can derive a novel secondary structure for the mutant RNA in which a portion of the sequences may fold to form a structure that resembles the central part of the wild-type molecule, which suggests that only the short stem-loop located in the center of the molecule and the adjoining base-paired regions may define the functional domain. These results also imply that only a portion of the VAI RNA structure may be recognized by the host factor(s).  相似文献   

3.
The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.  相似文献   

4.
Abstract Hairpin ribozymes occur naturally only in the satellite RNAs of tobacco ringspot virus (TRsV), chicory yellow mottle virus (CYMoV) and arabis mosaic virus (ArMV). The catalytic centre of the predominantly studied sTRsV hairpin ribozyme, and of sArMV is organised around a four-way helical junction. We show here that sCYMoV features a five-way helical junction instead. Mutational analysis indicates that the fifth stem does not influence kinetic parameters of the sCYMoV hairpin ribozyme in vitro reactions, and therefore seems an appendix to that junction in the other ribozymes. We report further that all three ribozymes feature a three-way helical junction outside the catalytic core in stem A, with Watson-Crick complementarity to loop nucleotides in stem B. Kinetic analyses of cleavage and ligation reactions of several variants of the sTRsV and sCYMoV hairpin ribozymes in vitro show that the presence of this junction interferes with their reactions, particularly the ligation. We provide evidence that this is not due to a presumed interaction of the afore-mentioned elements in stems A and B. The evolutionary survival of this cis-inhibiting element seems rather to be caused by the coincidence of its position with that of the hammerhead ribozyme in the other RNA polarity.  相似文献   

5.
Natural antisense RNAs have stem-loop (hairpin) secondary structures that are important for their function. The sar antisense RNA of phage P22 is unusual: the 3' half of the molecule forms an extensive stem-loop, but potential structures for the 5' half are not predicted to be thermodynamically stable. We devised a novel method to determine the secondary structure of sar RNA by examining the electrophoretic mobility on non-denaturing gels of numerous sar mutants. The results show that the wild-type RNA forms a 5' stem-loop that enhances electrophoretic mobility. All mutations that disrupt the stem of this hairpin decrease mobility of the RNA. In contrast, mutations that change the sequence of the stem without disrupting it (e.g. change G.U to A.U) do not affect mobility. Nearly all mutations in single-stranded regions of the structure also have no effect on mobility. Confirmation of the proposed 5' stem-loop was obtained by constructing and analyzing compensatory double mutants. Combinations of mutations that restore a base-pair of the stem also restore mobility. The genetic phenotypes of sar mutants confirm that the proposed secondary structure is correct and is essential for optimal activity of the antisense RNA in vivo.  相似文献   

6.
A model for the secondary structure of the self-cleaving RNA from hepatitis delta virus was tested. Specific base changes were introduced in each of four regions with the potential for base-pairing (stems I-IV), and for each variant sequence, a rate constant for cleavage was determined. In each stem, mutations that would interfere with Watson-Crick base-pairing also reduced the first-order rate constants by 10-10(4)-fold relative to the unmodified version. Within stems I and II and a shortened form of stem IV, compensatory changes resulted in rates of cleavage equal to or greater than the unaltered ribozyme sequence. Stem III compensatory mutants cleaved faster than the uncompensated mutants although they were not as active as the natural sequence, suggesting additional sequence-dependent requirements within this region. Structure probing of RNA containing the stem II mutations provided an independent confirmation of stem II in the ribozyme. The predictive value of the model was tested by designing two trans-acting ribozymes which were circularly permuted composites of genomic, antigenomic, and unique sequences. The core of these two catalytic RNAs was the same, but they otherwise differed in that, in one of them, a constraining tetraloop sequence was added to stem II. Both ribozymes catalyzed the trans cleavage of a substrate oligoribonucleotide, thus providing additional evidence for stem II and the proposed structure in general.  相似文献   

7.
Domain II of the hepatitis C virus internal ribosome entry site is a major RNA structure involved in the viral mRNA translation. It comprises four different structural domains. We performed in vitro selection against the apical loop of the domain II and we identified RNA aptamers folding as an imperfect hairpin with an internal loop of interacting with the apical loop of the domain II. This RNA-RNA interaction creates apical loop-internal loop complex. The aptamer binds the target with an apparent K(d) of 35nM. In this study, the main structural elements of the target and the aptamer involved in the formation of the complex are characterized by mutation, deletion, and RNase probing analysis. We demonstrate that a complementary loop flanked by G,C rich upper and lower stems are crucial for such RNA-RNA interactions.  相似文献   

8.
Viral escape from antisense RNA   总被引:4,自引:0,他引:4  
RNA coliphage SP was propagated for several generations on a host expressing an inhibitory antisense RNA complementary to bases 31–270 of the positive-stranded genome. Phages evolved that escaped inhibition. Typically, these escape mutants contained 3–4 base substitutions, but different sequences were observed among different isolates. The mutations were located within three different types of structural features within the predicted secondary structure of SP genomic RNA: (i) hairpin loops; (ii) hairpin stems; and (iii) the 5' region of the phage genome complementary to the antisense molecule. Computer modelling of the mutant genomic RNAs showed that all of the substitutions within hairpin stems improved the Watson–Crick pairing of the stem. No major structural rearrangements were predicted for any of the mutant genomes, and most substitutions in coding regions did not alter the amino acid sequence. Although the evolved phage populations were polymorphic for substitutions, many substitutions appeared independently in two selected lines. The creation of a new, perfect, antisense RNA against an escape mutant resulted in the inhibition of that mutant but not of other escape mutants nor of the ancestral, unevolved phage. Thus, at least in this system, a population of viruses that evolved to escape from a single antisense RNA would require a cocktail of several antisense RNAs for inhibition.  相似文献   

9.
Structure of an unusually stable RNA hairpin.   总被引:21,自引:0,他引:21  
G Varani  C Cheong  I Tinoco 《Biochemistry》1991,30(13):3280-3289
  相似文献   

10.
Transfer-messenger RNA (tmRNA) is a unique molecule that combines properties from both tRNA and mRNA, and facilitates a novel translation reaction termed trans -translation. According to phylogenetic sequence analysis among various bacteria and chemical probing analysis, the secondary structure of the 350-400 nt RNA is commonly characterized by a tRNA-like structure, and four pseudoknots with different sizes. A mutational analysis using a number of Escherichia coli tmRNA variants as well as a chemical probing analysis has recently demonstrated not only the presence of the smallest pseudoknot, PK1, upstream of the internal coding region, but also its direct implication in trans -translation. Here, NMR methods were used to investigate the structure of the 31 nt pseudoknot PK1 and its 11 mutants in which nucleotide substitutions are introduced into each of two stems or the linking loops. NMR results provide evidence that the PK1 RNA is folded into a pseudoknot structure in the presence of Mg(2+). Imino proton resonances were observed consistent with formation of two helical stem regions and these stems stacked to each other as often seen in pseudoknot structures, in spite of the existence of three intervening nucleo-tides, loop 3, between the stems. Structural instability of the pseudoknot structure, even in the presence of Mg(2+), was found in the PK1 mutants except in the loop 3 mutants which still maintained the pseudoknot folding. These results together with their biological activities indicate that trans -translation requires the pseudoknot structure stabilized by Mg(2+)and specific residues G61 and G62 in loop 3.  相似文献   

11.
RNA hairpin loop stability depends on closing base pair.   总被引:7,自引:4,他引:3       下载免费PDF全文
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequences of the type GGXAUAAUAYCC, where X and Y are CG, GC, AU, UA, GU, or UG. A nearest neighbor analysis of the data indicates the free energy change for loop formation at 37 degrees C, delta degrees Gl,37, averages 3.4 kcal/mol for hairpin loops closed with C.G, G.C, and G.U pairs. In contrast, delta G degree l,37 averages 4.6 kcal/mol for loops closed with A.U, U.A, or U.G pairs. Thus the stability of an RNA hairpin depends on the closing base pair. The hairpin with a GA mismatch that is formed by GGCGUAAUAGCC is more stable than the corresponding hairpin with an AA mismatch. Thus hairpin stability also depends on loop sequence. These effects are not included in current algorithms for prediction of RNA structure from sequence.  相似文献   

12.
Abstract

Three ribozymes, a hairpin ribozyme (HR112) and two hammerhead ribozymes (RZ115 and RZ119) containing a 5′C(UUCG)G3′ loop were designed to cleave the U5 region in the long terminal repeat (LTR) of HIV-1 RNA. The t½ values of chemically synthesized substrates mediated by three ribozymes were measured. The transformed CEM cells possessing these three ribozyme-encoding genes were challenged with a HIV-1IIIB strain, and two of these three ribozymes, HR112 and RZ119, were shown to possess strong anti-HIV-1 activity.

  相似文献   

13.
NMR study of a synthetic DNA hairpin   总被引:11,自引:0,他引:11  
The secondary structure of the synthetic oligodeoxyribonucleotide d(CGCGCGTTTTCGCGCG) (I) has been demonstrated to be a unimolecular hairpin structure (hairpin I) over a wide range of oligonucleotide concentrations (2 X 10(-5) to 1.6 X 10(-3) M) and temperature (0-87 degrees C). The assignments of the resonances to specific protons were carried out by use of two-dimensional nuclear Overhauser effect and COSY spectra and by comparison with the spectra of the duplex formed by d(CG)3. Comparison of hairpin I and the hairpin of d(ATCCTATTTTTAGGAT) (II) reveals that the exchange of imino protons in stem base pairs with solvent is much slower in I than in II. However, the exchange of thymine imino protons in the loop region is much faster in I than in II even though both hairpins contain four unpaired thymine residues. The secondary structure of hairpin I contains only six G X C base pairs, yet it is more stable than the d(CG)8 duplex containing 16 G X C base pairs at all concentrations of duplex lower than 10(-3) M. These observations suggest that intramolecular hairpin formation may effectively compete with bimolecular duplex formations when the appropriate intramolecular base pairs can form.  相似文献   

14.
Mutational Analysis of the mRNA Operator for T4 DNA Polymerase   总被引:2,自引:0,他引:2       下载免费PDF全文
M. D. Andrake  J. D. Karam 《Genetics》1991,128(2):203-213
Biosynthesis of bacteriophage T4 DNA polymerase is autogenously regulated at the translational level. The enzyme, product of gene 43, represses its own translation by binding to its mRNA 5' to the initiator AUG at a 36-40 nucleotide segment that includes the Shine-Dalgarno sequence and a putative RNA hairpin structure consisting of a 5-base-pair stem and an 8-base loop. We constructed mutations that either disrupted the stem or altered specific loop residues of the hairpin and found that many of these mutations, including single-base changes in the loop sequence, diminished binding of purified T4 DNA polymerase to its RNA in vitro (as measured by a gel retardation assay) and derepressed synthesis of the enzyme in vivo (as measured in T4 infections and by recombinant-plasmid-mediated expression). In vitro effects, however, were not always congruent with in vivo effects. For example, stem pairing with a sequence other than wild-type resulted in normal protein binding in vitro but derepression of protein synthesis in vivo. Similarly, a C----A change in the loop had a small effect in vitro and a strong effect in vivo. In contrast, an A----U change near the base of the hairpin that was predicted to increase the length of the base-paired stem had small effects both in vitro and in vivo. The results suggest that interaction of T4 DNA polymerase with its structured RNA operator depends on the spatial arrangement of specific nucleotide residues and is subject to modulation in vivo.  相似文献   

15.
Sequences from the 5' end of type 1 human immunodeficiency virus RNA dimerize spontaneously in vitro in a reaction thought to mimic the initial step of genomic dimerization in vivo. Dimer initiation has been proposed to occur through a "kissing-loop" interaction involving a specific RNA stem-loop element designated SL1: the RNA strands first interact by base pairing through a six-base GC-rich palindrome in the loop of SL1, whose stems then isomerize to form a longer interstrand duplex. We now report a mutational analysis aimed at defining the features of SL1 RNA sequence and secondary structure required for in vitro dimer formation. Our results confirm that mutations which destroy complementarity in the SL1 loop abolish homodimer formation, but that certain complementary loop mutants can heterodimerize. However, complementarity was not sufficient to ensure dimerization, even between GC-rich loops, implying that specific loop sequences may be needed to maintain a conformation that is competent for initial dimer contact; the central GC pair of the loop palindrome appeared critical in this regard, as did two or three A residues which normally flank the palindrome. Neither the four-base bulge normally found in the SL1 stem nor the specific sequence of the stem itself was essential for the interaction; however, the stem structure was required, because interstrand complementarity alone did not support dimer formation. Electron microscopic analysis indicated that the RNA dimers formed in vitro morphologically resembled those isolated previously from retroviral particles. These results fully support the kissing-loop model and may provide a framework for systematically manipulating genomic dimerization in type 1 human immunodeficiency virus virions.  相似文献   

16.
Forty-six RNA hairpins containing combinations of 3' or 5' bulge loops and a 3' or 5' fluorescein label were optically melted in 1 M NaCl, and the thermodynamic parameters ΔH°, ΔS°, ΔG°(37), and T(M) for each hairpin were determined. The bulge loops were of the group I variety, in which the identity of the bulge is known, and the group II variety, in which the bulged nucleotide is identical to one of its nearest neighbors, leading to ambiguity as to the exact position of the bulge. The fluorescein label at either the 3' end or 5' end of the hairpin did not significantly influence the stability of the hairpin. As observed with bulge loops inserted into a duplex motif, the insertion of a bulge loop into the stem of a hairpin loop was destabilizing. The model developed to predict the influence of bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability. Specifically, the influence of the bulge is related to the stability of the hairpin stem distal from the hairpin loop.  相似文献   

17.
The biogenesis and function of mature human microRNAs is dependent on the nuclear export of pre-microRNA precursors by Exportin 5 (Exp5). The precursor for the human miR-30 microRNA, which is a 63 nt long RNA hairpin bearing a 2 nt 3′ overhang, forms a specific complex with Exp5 and the Ran-GTP cofactor. Here, we have examined the structural requirements for pre-microRNA binding by Exp5. Our data indicate that pre-miR-30 binding requires an RNA stem of >16 bp and is facilitated by a 3′ overhang. Although a blunt-ended derivative of the pre-miR-30 stem–loop remained capable of binding Exp5, 5′ overhangs were inhibitory. miR-30 variants that had lost the ability to bind Exp5 effectively were not efficiently exported from the nucleus and were also expressed at reduced levels. Furthermore, formation of a pre-microRNA/Exp5/Ran-GTP complex inhibited exonucleolytic digestion of the pre-miRNA in vitro. Together, these data demonstrate that pre-microRNA binding by Exp5 involves recognition of almost all of the RNA hairpin, with the exception of the terminal loop. Moreover, these results argue that Exp5 binding not only mediates pre-microRNA nuclear export but also prevents nuclear pre-microRNA degradation.  相似文献   

18.
Free energy of imperfect nucleic acid helices. II. Small hairpin loops   总被引:61,自引:0,他引:61  
Physical studies of enzymically synthesized oligonucleotides of defined sequence are used to evaluate quantitatively the stability of small RNA hairpin loops and helices. The series (Ap)4G(pC) N(pU)4, N = 4, 5 or 6, exists as monomolecular hairpin helices when N ≥ 5, and as imperfect dimer helices when N ≤ 4. In this size range, hairpin loops become more favorable (less destabilizing thermodynamically) as they increase in size from 3 to 4 to 5 unbonded nucleotides. Very small hairpin loops are particularly destabilizing; molecules whose base sequence would imply a hairpin loop of three nucleotides will generally exist with a loop of five, including a broken terminal base pair.Thermodynamic parameters for base pair and loop formation are calculated by a method which makes unnecessary the use of measured enthalpies of polynucleotide melting. Literature data on oligonucleotide double helices yield estimates of the free energy contribution from each of the six types of stacking interactions between three possible neighboring base pairs. The advantage of this approach is that the properties of oligonucleotides are used in predicting the stability of small RNA helices, avoiding the long extrapolation from the properties of high polymers.We provide Tables of temperature-dependent free energies that allow one to predict the stability and thermal transition temperature of many simple RNA secondary structures (applicable to ~1 m-Na+ concentration). As an example, we apply the rules to an isolated fragment of tRNASer (yeast) (Coutts, 1971), whose properties were not used in calculating the free-energy parameters. The experimental melting temperature of 88 °C is predicted with an error margin of 5 deg. C.  相似文献   

19.
Genomic RNA isolated from retroviral particles is a dimer composed of two identical strands. A region called the dimer linkage signal close to the 5′ end of the RNA may be involved in forming the dimer. Several models for the formation of the HIV-1 RNA dimer have been proposed. In the kissing loop model, dimerisation results from base-pairing between homologous sequences in an RNA stem – loop. In the guanine tetrad model interstrand guanine contacts form the dimer. We have made mutations preventing the dimerisation of subgenomic RNAsin vitroby these mechanisms. To prevent the kissing loop dimer forming we changed the complementary loop sequence from 711GCGCGC716 to 711AAACGC716. To prevent the guanine tetrad dimer forming we changed G819 to U. These mutations were introduced into a clone of HIV-1NL4-3separately and collectively. All three clones produced infectious virions. Dimeric RNA with similar thermal stabilities was isolated from viruses containing either the single or the double mutations. The results suggest that sequences involved in forming a guanine tetrad are not important for HIV-1 RNA dimerisation. In contrast sequences involved in forming a kissing loop complex are not absolutely required, but are important in forming a stable HIV-1 RNA dimer.  相似文献   

20.
The hairpin ribozyme is an RNA enzyme that performs site-specific phosphodiester bond cleavage between nucleotides A-1 and G+1 within its cognate substrate. Previous functional studies revealed that the minimal hairpin ribozyme exhibited "gain-of-function" cleavage properties resulting from U39C or U39 to propyl linker (C3) modifications. Furthermore, each "mutant" displayed different magnesium-dependence in its activity. To investigate the molecular basis for these gain-of-function variants, crystal structures of minimal, junctionless hairpin ribozymes were solved in native (U39), and mutant U39C and U39(C3) forms. The results revealed an overall molecular architecture comprising two docked internal loop domains folded into a wishbone shape, whose tertiary interface forms a sequestered active site. All three minimal hairpin ribozymes bound Co(NH(3))(6)(3+) at G21/A40, the E-loop/S-turn boundary. The native structure also showed that U37 of the S-turn adopts both sequestered and exposed conformations that differ by a maximum displacement of 13 A. In the sequestered form, the U37 base packs against G36, and its 2'-hydroxyl group forms a water mediated hydrogen bond to O4' of G+1. These interactions were not observed in previous four-way-junction hairpin ribozyme structures due to crystal contacts with the U1A splicing protein. Interestingly, the U39C and U39(C3) mutations shifted the equilibrium conformation of U37 into the sequestered form through formation of new hydrogen bonds in the S-turn, proximal to the essential nucleotide A38. A comparison of all three new structures has implications for the catalytically relevant conformation of the S-turn and suggests a rationale for the distinctive metal dependence of each mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号