首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of action of a mammalian DNA repair endonuclease   总被引:17,自引:0,他引:17  
The mechanism of action of a DNA repair endonuclease isolated from calf thymus was determined. The calf thymus endonuclease possesses a substrate specificity nearly identical with that of Escherichia coli endonuclease III following DNA damage by high doses of UV light, osmium tetroxide, and other oxidizing agents. The calf thymus enzyme incises damaged DNA at sites of pyrimidines. A cytosine photoproduct was found to be the primary monobasic UV adduct. The calf thymus endonuclease and E. coli endonuclease III were found to possess similar, but not identical, DNA incision mechanisms. The mechanism of action of the calf thymus endonuclease was deduced by analysis of the 3' and 5' termini of the enzyme-generated DNA scission products with DNA sequencing methodologies and HPLC analysis of the material released by the enzyme following DNA damage. The calf thymus endonuclease removes UV light and osmium tetroxide damaged bases via an N-glycosylase activity followed by a 3' apurinic/apyrimidinic (AP) endonuclease activity. The calf thymus endonuclease also possesses a novel 5' AP endonuclease activity not possessed by endonuclease III. The product of this three-step mechanism is a nucleoside-free site flanked by 3'-and 5'-terminal phosphate groups. These results indicate the conservation of both substrate specificity and mechanism of action in the enzymatic removal of oxidative base damage between prokaryotes and eukaryotes. We propose the name redoxy endonucleases for this group of enzymes.  相似文献   

2.
The repair of some types of DNA double-strand breaks is thought to proceed through DNA flap structure intermediates. A DNA flap is a bifurcated structure composed of double-stranded DNA and a displaced single-strand. To identify DNA flap cleaving activities in mammalian nuclear extracts, we created an assay utilizing a synthetic DNA flap substrate. This assay has allowed the first purification of a mammalian DNA structure-specific nuclease. The enzyme described here, flap endonuclease-1 (FEN-1), cleaves DNA flap strands that terminate with a 5' single-stranded end. As expected for an enzyme which functions in double-strand break repair flap resolution, FEN-1 cleavage is flap strand-specific and independent of flap strand length. Furthermore, efficient flap cleavage requires the presence of the entire flap structure. Substrates missing one strand are not cleaved by FEN-1. Other branch structures, including Holliday junctions, are also not cleaved by FEN-1. In addition to endonuclease activity, FEN-1 has a 5'-3' exonuclease activity which is specific for double-stranded DNA. The endo- and exonuclease activities of FEN-1 are discussed in the context of DNA replication, recombination and repair.  相似文献   

3.
4.
The substrate specificity of a calf thymus endonuclease on DNA damaged by UV ligh, ionizing radiation, and oxidizing agents was investigated. End-labeled DNA fragments of defined sequence were used as substrates, and the enzyme-generated scission products were analyzed by using DNA sequencing methodologies. The enzyme was shown to incise damaged DNA at pyrimidine sites. The enzyme incised DNA damaged with UV light, ionizing radiation, osmium tetroxide, potassium permanganate, and hydrogen peroxide at cytosine and thymine sites. The substrate specificity of the calf thymus endonuclease was compared to that of Escherichia coli endonuclease III. Similar pyrimidine base damage specificities were found for both enzymes. These results define a highly conserved class of enzymes present in both procaryotes and eucaryotes that may mediate an important role in the repair of oxidative DNA damage.  相似文献   

5.
6.
7.
8.
This paper describes experiments involving the measurement of DNA damage and repair after treatment with 4-nitroquinoline 1-oxide (4NQO) or aflatoxin B1 (AFB1) epoxide in a number of mammalian cell cultures primarily associated with defects in the excision repair of UV-induced DNA damage. The results with transformed derivatives of XP cells belonging to different complementation groups showed that the extent of repair of 4NQO adducts at the N2 or C8 of guanosine did not correlate to the extent of repair reported by others after UV-irradiation. An examination of 4NQO repair in rodent UV-sensitive cell lines from different ERCC groups indicated that again there was little correlation between the extent of 4NQO and UV repair. However, regardless of complementation group those mutants that were defective in the repair of pyrimidine dimers and 6,4-photoproducts did exhibit a reduced ability to repair the 4NQO N2 guanosine adduct, whereas those mutants defective in pyrimidine dimer repair alone were able to repair this lesion as normal. In all of these cell lines there was a normal capacity to repair the 4NQO C8 guanosine adduct. Less extensive experiments involving AFB1 epoxide showed an XPC-transformed cell line was able to repair 40% of lesions after 6 h, whereas only 20% of repair is seen after UV. The rodent mutant V-C4 which belongs to the same ionising radiation group as irs2, was partially defective in repairing AFB1-induced damage. These experiments highlight the fact that although there are many commonalities between the repair of UV damages and lesions classed as large DNA adducts differences clearly exist, the most striking example here being the repair of the C8 guanosine 4NQO adduct which rarely correlates with a defect in UV repair.  相似文献   

9.
Sequence specific DNA methylation sometimes results in the protection of some or all of a restriction endonucleases' cleavage sites. This is usually, but not always, the result of methylation of one or both strands of DNA at the site characteristic of the corresponding "cognate" modification methylase. The known effects of sequence specific methylation on restriction endonucleases are compiled.  相似文献   

10.
Properties of a DNA repair endonuclease from mouse plasmacytoma cells   总被引:1,自引:0,他引:1  
The properties of a DNA-repair endonuclease isolated from mouse plasmacytoma cells have been further studied. It acted on ultraviolet-light-irradiated supercoiled DNA, and the requirement for a supercoiled substrate was absolute at ultraviolet light doses below 1.5 kJ m-2. At higher doses relaxed DNA could also serve as a substrate, but the activity on this DNA was due mostly to hydrolysis of ultraviolet-light-induced apurinic/apyrimidinic (AP) sites by the AP-endonuclease activity associated with the enzyme. The latter enzyme activity did not require a supercoiled form of the DNA. The enzyme also introduced nicks in unirradiated d(A-T)n. The nicked ultraviolet-light-irradiated DNA served as a substrate for DNA polymerase I, showing that the nicks contained free 3'-OH ends. Treatment of the nicked ultraviolet-light-irradiated DNA with bacterial alkaline phosphatase followed by T4 polynucleotide kinase, resulted in the phosphorylation of the 5' ends of the nicks, indicating that the nicks possessed a 5'-phosphate group; 5'- and 3'-mononucleotide analyses of the labelled DNA suggested that the enzyme introduced breaks primarily between G and T residues. The enzyme did not act on any specific region on the supercoiled DNA molecule; it produced random nicks in ultraviolet-light-modified phi X 174 replicative form I DNA. Antibodies raised against ultraviolet-light-irradiated DNA inhibited the activity. DNA adducts such as N-acetoxy-2-acetylaminofluorene and psoralen were not recognized by the enzyme. It is suggested that the enzyme has a specificity directed toward helical distortions.  相似文献   

11.
The necessary conditions for a unique solution of the sedimentation vs DNA molecular weight equations are considered and applied to the native DNA of the L5178Y mouse leukemia cell. A brief review and critique of the literature of sedimentation anomalies is given to demonstrate that such anomalies are not present in the data reported here. It is shown that the chromosomal DNA of L5178Y cells comes in uniform packages of 1.0 (0.5–2.0) × 1010 daltons. All pieces are of an identical size which corresponds to the DNA content of about 1/13 the average chromatid. Both the size estimate and the number of such molecules/cell are confirmed by viscoelastometry. This DNA is shown to be free of radioactively demonstrable protein and/or lipid contaminants and of the same isopycnic density as T4 DNA. Variance analysis is applied to determine the precision of all measurements and to pinpoint major sources of error. A relationship between [η] and M is derived for native DNA in 1.0M NaCl. A necessary conclusion from these data is that mammalian chromosome models requiring degrees of polynemy greater than 16-neme (in G1) are incorrect (to the extent that the L5178Y cell is typical of mammalian cells).  相似文献   

12.
13.
14.
The human endonuclease V gene is located in chromosome 17q25.3 and encodes a 282 amino acid protein that shares about 30% sequence identity with bacterial endonuclease V. This study reports biochemical properties of human endonuclease V with respect to repair of deaminated base lesions. Using soluble proteins fused to thioredoxin at the N-terminus, we determined repair activities of human endonuclease V on deoxyinosine (I)-, deoxyxanthosine (X)-, deoxyoxanosine (O)- and deoxyuridine (U)-containing DNA. Human endonuclease V is most active with deoxyinosine-containing DNA but with minor activity on deoxyxanthosine-containing DNA. Endonuclease activities on deoxyuridine and deoxyoxanosine were not detected. The endonuclease activity on deoxyinosine-containing DNA follows the order of single-stranded I>G/I>T/I>A/I>C/I. The preference of the catalytic activity correlates with the binding affinity of these deoxyinosine-containing DNAs. Mg(2+) and to a much less extent, Mn(2+), Ni(2+), Co(2+) can support the endonuclease activity. Introduction of human endonuclease V into Escherichia coli cells deficient in nfi, mug and ung genes caused three-fold reduction in mutation frequency. This is the first report of deaminated base repair activity for human endonuclease V. The relationship between the endonuclease activity and deaminated deoxyadenosine (deoxyinosine) repair is discussed.  相似文献   

15.
Purification and properties are described for an endonuclease isolated from calf thymus which attacks double-stranded, unmodified DNA, primarily by making single-strand breaks. No detectable acid-soluble products arise from the reaction. Double-strand breaks may occasionally be produced by the introduction of single-strand breaks on opposite strands in close proximity. The enzyme does not attack denatured DNA and is not inhibited by tRNA. Although added divalent cations are not required for activity, the enzyme is inhibited by EDTA, which suggests an essential role for bound cations; reaction is inhibited by Ca2+. The endonuclease has a broad pH optimum and is inactivated by preincubation at temperatures of 45 degrees C and higher. The molecular weight as determined by gel chromatography is about 30 000. Analysis of the products of reaction on a defined substrate, bacteriophage T3 DNA, by sedimentation in alkaline sucrose density gradients indicates limit products with chain lengths of about 0.8 X 10(6) daltons. On electrophoresis in agarose gels these products were shown to be heterogeneous in size. The endonuclease appears to generate 3'-hydroxyl and 5'-phosphate ends. The ability of the endonuclease to utilize bovine DNA as substrate argues against a restriction role for this enzyme.  相似文献   

16.
DNA excision repair in mammalian cell extracts.   总被引:3,自引:0,他引:3  
The many genetic complementation groups of DNA excision-repair defective mammalian cells indicate the considerable complexity of the excision repair process. The cloning of several repair genes is taking the field a step closer to mechanistic studies of the actions and interactions of repair proteins. Early biochemical studies of mammalian DNA repair in vitro are now at hand. Repair synthesis in damaged DNA can be monitored by following the incorporation of radiolabelled nucleotides. Synthesis is carried out by mammalian cell extracts and is defective in extracts from cell lines derived from individuals with the excision-repair disorder xeroderma pigmentosum. Biochemical complementation of the defective extracts can be used to purify repair proteins. Repair of damage caused by agents including ultraviolet irradiation, psoralens, and platinating compounds has been observed. Neutralising antibodies against the human single-stranded DNA binding protein (HSSB) have demonstrated a requirement for this protein in DNA excision repair as well as in DNA replication.  相似文献   

17.
By means of DNA-cellulose chromatography an enzyme with endonucleolytic activity has been isolated from nuclear acidic protein fraction of mammalian cells. The main active fraction, eluted at 0.7 M NaCl, effects the velocity sedimentation of UV-irradiated and alkylated DNA, resulting in a decrease of the molecular weight. The fraction is completely inactive using native as well as heat-denatured DNA.  相似文献   

18.
19.
Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号