首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
缺氧时培养的心内膜内皮细胞内皮素自分泌调节的探讨   总被引:1,自引:0,他引:1  
本实验观察缺氧对心内膜内皮细胞(EEC)内皮素-1(ET-1)分泌的影响。传代培养的新生小牛右心室EEC的ET-1免疫组织化学显色强阳性。采用放免测定发现EEC可向培养液中分泌ET-1,其分泌速度与细胞密度呈线性负相关(r=-0.9542,P<0.001),与温育时间呈指数负相关(r=-0.998,P<0.001)。0%O2缺氧6~12h后,EEC的ET-1分泌约增加1倍(P<0.001)。无论在常氧还是缺氧情况下,硝普钠抑制EEC的ET-1分泌,而NO合酶抑制剂LNA则促进ET-1分泌。上述结果表明:EEC可能通过分泌ET-1调节心脏功能,内源性NO抑制ET-1分泌;缺氧可能显著影响EEC的ET-1分泌  相似文献   

2.
目的和方法 本研究采用离子探针Fura-2/AM结合计算机图象分析技术,并通过施加NO合酶抑制剂L-NNA和NO的作用靶--鸟苷酸环化酶(GC)的抑制剂美兰(Methylene Blue;MB),观察经培养的大鼠大脑皮层微血管内皮细胞和平滑肌细胞中的〖Ca^2+〗i在低氧作用后的变化以及与有关血管舒张因子NO和cGMP之间的关系。结果 低氧时大脑微血管内皮细胞和平滑肌细胞内的Ca^2+浓度有下降,  相似文献   

3.
NMDA受体与中枢神经系统发育   总被引:9,自引:0,他引:9  
中枢神经系统兴奋性氨基酸离子型受体-NMDA受体,是由NMDAR1和NMDAR2两个亚单位共同构成的受体通道复合体。NMDA受本激活后可引起神经元细胞对Na^+,K^+和Ca^2+通透性增强,产生兴奋性突触后电位,在中枢神经发育的过程中,NMDA受体通过不同亚型的选择性表达,改变自身的结构和功能,进而影响NMDA受体介导的Ca^2+内流,调节神经元内Ca^2+依赖的第二信使系统,最终实现对中枢神经  相似文献   

4.
急性缺氧对冠状动脉内皮细胞释放ET-1、NO、PGI2的影响   总被引:1,自引:0,他引:1  
冠状动脉内皮细胞能分泌多种血管收缩和舒张物质。其中缩血管物质以内皮素的缩血管作用最强 ,且作用持久。内皮源性舒张因子主要为NO和花生四烯酸代谢产物PGI2 。三种内皮源性血管活性因子均通过旁分泌方式作用于血管内皮下的平滑肌细胞 ,调节局部血管紧张度和血流量。在体研究表明缺氧可引起内皮素 1、NO、PGI2 合成分泌改变。但在体研究时血浆及组织匀浆中ET 1、NO、PGI2 的浓度改变难以反映其在血管内皮细胞形成和释放的状况。国外有关缺氧对离体冠状动脉内皮细胞合成和释放ET 1、NO、PGI2 影响的研究也才刚起…  相似文献   

5.
Zheng HZ  An GS  Nie SH  Tang CS  Liu NK  Wang SH 《生理学报》1998,50(4):379-384
培养的家兔胸主动脉血管平滑肌细胞(VSMC)分别以内皮素(ET-1)、一氧化氮(NO)前体L-Arg和NO供体SIN-1刺激,或用ET-1+L-Arg、ET-1+SIN-1联合刺激,测VSMC^3H-TdR掺入、丝裂素活化蛋白激酶(MAPK)活性及蛋白激酶C(PKC)活性的改变,以研究NO抑制ET-1促VSMC增殖作用的信号转导途径。结果表明:(1)ET-1 10^-8mol/L单独刺激,^3H-  相似文献   

6.
Wang PY  Liu J  Yu ZH  Xu SM  Luo DC  Sun BY 《生理学报》1998,50(2):193-198
缺氧是否通过影响血管平滑肌细胞的自分泌功能而参与缺氧性肺动脉高压的发生尚不清楚。本实验动态了缺氧对培养的新生小牛肺动脉平滑肌细胞(PASMCs)的血管紧张素Ⅱ(ATⅡ)分泌的影响。结果发现:2.5%O2缺氧导致PASMCs的ATⅡ分泌降低,0%O2缺氧进一步抑制ATⅡ分泌。常氧条件下,NO供体SIN-1显著的抑制ATⅡ分泌,而NO合酶凶制剂硝基精氨酸(LNA)则能消除缺氧对ATⅡ分泌的抑制作用。0  相似文献   

7.
内源性CO在心血管系统的细胞信使作用   总被引:8,自引:0,他引:8  
近年的研究发现内源性一氧化碳(CO)不仅是中枢误字率牟细胞信使,也是心血管扩细胞信使。血红素-HO-CO-CGMP系统与L-arg-NOS-NO-cGMP系统及血管活性物质的关系密切,涉及许多生理和病理生理过程。CO在心血管系统的血管舒张,血压调控和心肌保护中起重要作用。  相似文献   

8.
缺氧对培养的肺动脉内皮细胞血管紧张素Ⅱ分泌的影响   总被引:2,自引:0,他引:2  
缺氧是否通过影响血管内皮细胞的分泌功能而参与缺氧性肺动脉高压的发生尚不清楚。本实验动态观察了缺氧对培养的新生小牛内皮细胞(PAEC)的血管紧张素Ⅱ(ATⅡ)分泌的影响。结果发现:2.5%O2缺氧早期(1.5h),PAEC的ATⅡ分泌增加(P<0.01vs常氧组),缺氧后期与常氧组无明显差别;0%O2缺氧早期(1.5-6h),ATⅡ分泌明显降低(P<0.01vs常氧组及2.5%O2组),后期ATⅡ分泌明显增高(P<0.01vs常氧组及2.5%O2组);无论缺氧还是常氧条件下,NO供体SIN1显著抑制ATⅡ的分泌(P<0.01),而内源性NO抑制剂硝基精氨酸则明显促进ATⅡ分泌(P<0.01);0%O2缺氧24h后,PAEC细胞内cGMP含量明显降低(P<0.05)。上述结果表明缺氧可通过抑制PAEC的内源性NO产生而促进ATⅡ的分泌,PAEC自分泌的改变可能参与缺氧性肺动脉高压的发生过程。  相似文献   

9.
单羧酸类Cl-通道阻断剂对心室肌CFTR Cl-通道的影响   总被引:4,自引:2,他引:2  
Zhou SS  Zang YM 《生理学报》1999,51(3):297-302
本文采用全细胞膜片箝与细胞内灌注技术,观察了单羧酸类Cl^-通道阻断剂对豚鼠心室肌囊性纤维变性膜透性调节蛋白(CFTR)Cl^-电流的影响,细胞包9-AC以可逆方式增强异丙肾上腺素(ISO)激发的CFTRCl^-的外向电流成分,5-nitro-2-(3-phenylpropylamino)-benzoate(NPPB)和二苯胺羧酸(DPC)对ISO发的CFTRCl^-电流的作用呈现先增强后抑制的双  相似文献   

10.
cGMP对原代培养猪冠状动脉平滑肌细胞钙激活钾通道的作用   总被引:11,自引:1,他引:10  
Chai Q  Zeng XR 《生理学报》1998,50(1):115-119
3′,5′-环-磷酸鸟苷(cGMP)具有激活血管平滑肌细胞膜上钙激活钾通道(KCa通道)的作用,从而引起血管平滑肌细胞的舒张。但cGMP激活KCa物机制存在争论。本工作应用膜片箝技术以原代培养猪冠状动脉平滑肌细胞为对象研究了cGMP影响KCa通道的机制。实验结果显示:(1)在cell-attached膜片方式下,当溶液内游离Ca^2+浓度为10^-7mol/L,膜电位为+70mV时,不同浓度的cG  相似文献   

11.
Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.  相似文献   

12.
The present study evaluated the role of endothelial intermediate conductance calcium-sensitive potassium channels (IKCa) in the mechanism of endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in pressurized cerebral arteries. Male rat middle cerebral arteries (MCA) were mounted in an isolated vessel chamber, pressurized (85 mmHg), and luminally perfused (100 microl/min). Artery diameter was measured simultaneously with either endothelial intracellular Ca2+ concentration ([Ca2+]i; fura-2) or changes in endothelial membrane potential [4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS)]. Nitric oxide synthase and cyclooxygenase inhibitors were present throughout. Luminal application of UTP produced EDHF-mediated dilations that correlated with significant endothelial hyperpolarization. The dilation and endothelial hyperpolarization were virtually abolished by inhibitors of IKCa channels but not by selective inhibitors of small or large conductance KCa channels (apamin and iberiotoxin, respectively). Additionally, direct stimulation of endothelial IKCa channels with 1-ethyl-2-benzimidazolinone (1-EBIO) produced endothelial hyperpolarization and vasodilatation that were blocked by inhibitors of IKCa channels. 1-EBIO hyperpolarized the endothelium but did not affect endothelial [Ca2+]i. We conclude that the mechanism of EDHF-mediated dilations in cerebral arteries requires stimulation of endothelial IKCa channels to promote endothelial hyperpolarization and subsequent vasodilatation.  相似文献   

13.
K(+) conductance is a major determinant of membrane potential (V(m)) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by V(m) through the action of voltage-operated Ca(2+) channels (VOCC) in VSMC. Increased K(+) conductance leads to hyperpolarization and vasodilation, while inactivation of K(+) channels causes depolarization and vasoconstriction. K(+) channels in EC indirectly participate in the control of vascular tone by several mechanisms, e.g., release of nitric oxide and endothelium-derived hyperpolarizing factor. In the kidney, a change in the activity of one or more classes of K(+) channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K(+) channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood pressure. Four main classes of K(+) channels [calcium activated (K(Ca)), inward rectifier (K(ir)), voltage activated (K(V)), and ATP sensitive (K(ATP))] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K(+) channels in the regulation of renal vascular function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K(+) channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations in K(+) channel function, the role of renal vascular K(+) channels in the control of salt and water excretion deserves attention.  相似文献   

14.
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.  相似文献   

15.
Mechanical transduction by membrane ion channels: a mini review   总被引:4,自引:0,他引:4  
There are ion channels in the cell membrane that are sensitive to stress in the membrane cytoskeleton. Some channels turn on with stress, others turn off. In specialized receptors such as those involved in hearing, touch, etc. the role of the channels is clear. However, virtually all cells have these channels, and we don't yet know the physiological role of the channels although it is reasonable to suppose that they are involved in the control of cell size, either acutely as in volume regulation, or trophically as in the control of cell division.  相似文献   

16.
Tumor vascularization is a critical process that determines tumor growth and metastasis. In the last decade new experimental evidence obtained from in vitro and in vivo studies have challenged the classical angiogenesis model forcing us to consider new scenarios for tumor neovascularization. In particular, the genetic stability of tumor-derived endothelial cells (TECs) has been recently questioned in several studies, which show that TECs, as well as pericytes, differ significantly from their normal counterparts at genetic and functional levels. In addition to such an epigenetic action of tumor microenvironment on endothelial cells (ECs) commitment, the distinct characteristics of TECs could be due to differences in their origin compared with preexisting differentiated ECs. Intracellular Ca(2+) signals are involved at different critical phases in the regulation of the complex process of angiogenesis and tumor progression. These signals are generated by a wide variety of intrinsic and extrinsic factors. Several key components of Ca(2+) signaling including Ca(2+) channels in the plasma membrane, endoplasmic reticulum, calcium pumps, and mitochondria contribute to the generation, amplitude, and frequency of these Ca(2+) change. In particular, several members of the transient receptor potential (TRP) family of calcium-permeable channels have profound effects on the function of ECs. Because of its multifaceted role in the control of cell function, proliferation, and motility, TRP channels have been suggested as a potential molecular target for control of tumor neovascularization. Since plasma membrane Ca(2+) channels are easily and directly accessible via the bloodstream, they are potential targets for a number of pharmacological and antibody-targeted therapeutic strategies, with specificity being the main limitation. In this review we discuss recent advances in understanding the role of Ca(2+) channels, with specific reference to TRP channels, in tumor vascularization process.  相似文献   

17.
Previous studies have shown endothelial cell membrane depolarization and generation of reactive oxygen species (ROS) in endothelial cells with abrupt reduction in shear stress (ischemia). This study evaluated the role of ATP-sensitive potassium (K(ATP)) channels and NADPH oxidase in the ischemic response by using Kir6.2-/- and gp91(phox)-/- mice. To evaluate ROS generation, we subjected isolated perfused mouse lungs labeled with 2',7'-dichlorodihydrofluorescein (DCF), hydroethidine (HE), or diphenyl-1-pyrenylphosphine (DPPP) to control perfusion followed by global ischemia. In wild-type C57BL/6J mice, imaging of subpleural endothelial cells showed a time-dependent increase in intensity for all three fluorescence probes with ischemia, which was blocked by preperfusion with cromakalim (a K(ATP) channel agonist) or diphenyleneiodonium (DPI, a flavoprotein inhibitor). Endothelial cell fluorescence with bis-oxonol, a membrane potential probe, increased during lung ischemia indicating cell membrane depolarization. The change in membrane potential with ischemia in lungs of gp91(phox)-/- mice was similar to wild type, but ROS generation did not occur. Lungs from Kir6.2-/- showed marked attenuation of the change in both membrane potential and ROS production. Thus membrane depolarization during lung ischemia requires the presence of a K(ATP) channel and is required for activation of NADPH oxidase and endothelial ROS generation.  相似文献   

18.
The vascular endothelium plays a critical role in vascular health by controlling arterial diameter, regulating local cell growth, and protecting blood vessels from the deleterious consequences of platelet aggregation and activation of inflammatory responses. Circulating chemical mediators and physical forces act directly on the endothelium to release diffusible relaxing factors, such as nitric oxide (NO), and to elicit hyperpolarization of the endothelial cell membrane potential, which can spread to the surrounding smooth muscle cells via gap junctions. Endothelial hyperpolarization, mediated by activation of calcium-activated potassium (K(Ca)) channels, has generally been regarded as a distinct pathway for smooth muscle relaxation. However, recent evidence supports a role for endothelial K(Ca) channels in production of endothelium-derived NO, and indicates that pharmacological activation of these channels can enhance NO-mediated responses. In this review we summarize the current data on the functional role of endothelial K(Ca) channels in regulating NO-mediated changes in arterial diameter and NO production, and explore the tempting possibility that these channels may represent a novel avenue for therapeutic intervention in conditions associated with reduced NO availability such as hypertension, hypercholesterolemia, smoking, and diabetes mellitus.  相似文献   

19.
The role of ion channels in apoptosis   总被引:2,自引:0,他引:2  
The plasma membrane as well as the mitochondrial outer and inner membranes contain a number of ion channels that are responsible not only for existence of cells under physiological conditions but they also participate directly in apoptosis. In the apoptotic cells the activated K+, Cl- channels of plasma membrane control the cell volume and mediate the regulation of protease and nuclease activities. The mitochondrial channels are involved in the ionic movements and leakage of apoptogenic factors from the intermembrane space to cytosol. During apoptosis, an important role in the permeabilization of the outer mitochondrial membrane play Bcl-2 family proteins. In this review the recent findings on the function of ion channels in apoptotic cells and the role played by Bcl-2 proteins in the control of apoptosis are discussed.  相似文献   

20.
Localization of TRPC1 channel in the sinus endothelial cells of rat spleen   总被引:1,自引:1,他引:0  
The ultrastructural localization of transient receptor potential C1 (TRPC1) channels in the sinus endothelial cells of rat spleen was examined by confocal laser scanning and electron microscopy. In addition, the localization of the closely associated proteins and channels, VE-cadherin, calreticulin, inositol-1,4,5-trisphosphate receptors type 1 (IP3R1), and ryanodine receptor (RyR), was also examined. Immunofluorescence microscopy of tissue cryosections revealed TRPC1 channels to be localized within the cytoplasm, in the superficial layer of the apical and basal parts of the cells, and in the junctional area of the adjacent endothelial cells. The distribution of Ca2+-storing tubulovesicular structures within endothelial cells was established by using tissue sections treated with osmium ferricyanide. Electron microscopy revealed densely stained tubulovesicular structures closely apposed to the plasma membrane and that occasionally ran closely parallel to the plasma membrane and near the caveolae and junctional apparatus. Immunolocalization analysis at the electron microscopy level using immunogold bound to the secondary antibody confirmed that TRPC1 channels were localized in the plasma membrane, caveolae, and vesicular structures in the subplasmalemmal cytoplasm of sinus endothelial cells. Calreticulin was predominantly localized in endoplasmic reticulum. IP3R1 and RyR, considered to be type 3, were colocalized in endoplasmic reticulum in proximity to the plasma membrane and caveolae. Thus, TRPC1 channels in sinus endothelial cells of the spleen might play an important role in controlling blood cell passage through phenomena including cytoskeletal reorganization, cell retraction, and disassembly of adherens junctions.This work was supported by a Grant-in-Aid for Scientific Research (C), Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号