首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The quantitation of inositol phosphates (IPs), mediators of certain signal transduction processes, typically involves laborious and time consuming conventional ion-exchange chromatography procedures. We have developed a high throughput microtiter plate-based IP assay that utilizes vacuum rather than gravitational flow and has significant advantages over existing methods. The response of recombinant HEK-293 cells expressing human LHRH receptor cDNA to LHRH agonists was used as a model system to develop the assay conditions. Cell lysates containing labeled IPs were applied in 96-well plates fitted with filtration discs containing regenerated Dowex AGI-X8 resin. Specifically bound inositol phosphates were eluted with 1 M ammonium formate in 0.1 M formic acid directly into a fresh 96-well plate and an aliquot of the eluate from each well is transferred into a 96-well plate and counted. The results were comparable to those obtained with the conventional column method and the variation among replicates was significantly improved. This assay facilitates rapid quantitation of inositol phosphates from a large number of samples with relative ease and reduced generation of radioactive waste.  相似文献   

2.
The phosphatidylinositol turnover assay is used widely to measure activation, and inhibition, of G(q)-linked G-protein-coupled receptors. Cells expressing the receptor of interest are labeled by feeding with tritiated myo-inositol. The label is incorporated into cellular phosphatidylinositol 4,5-bisphosphate, which, upon agonist binding to the receptor, is hydrolyzed by phospholipase C to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol. In the presence of Li(+), dephosphorylation of IP(3) to inositol is blocked, and the mass of soluble inositol phosphates is a quantitative readout of receptor activation. Current protocols for this assay all involve an anion-exchange chromatography step to separate radiolabeled inositol phosphates from radiolabeled inositol, making the assay cumbersome and difficult to automate. We now describe a scintillation proximity assay to measure soluble inositol phosphate mass in cell extracts, thus obviating the need for the standard chromatography step. The method uses positively charged yttrium silicate beads that bind inositol phosphates, but not inositol. We have used this assay to measure activation of recombinant and endogenous muscarinic acetylcholine receptors and activation of recombinant neuropeptide FF2 receptor coupled to IP(3) production by coexpression of a chimeric G protein. Further, we demonstrate the use and functional validity of this assay in a semiautomated, 384-well format, by characterizing the muscarinic receptor antagonists pirenzepine and atropine.  相似文献   

3.
Few receptor-mediated phenomena have been detected in peripheral nerve. In this study, the ability of the muscarinic cholinergic receptor agonist carbamylcholine to enhance phosphoinositide (PPI) breakdown in sciatic nerve was investigated by measuring the accumulation of inositol phosphates. Rat sciatic nerve segments were prelabeled with myo-[3H]inositol and then incubated either with or without carbamylcholine in the presence of Li+. [3H]Inositol monophosphate ([3H]IP) accumulation contained most of the radioactivity in inositol phosphates, with [3H]inositol bisphosphate ([3H]IP2) and [3H]inositol trisphosphate ([3H]IP3) accounting for 7-8% and 1-2% of the total, respectively. In the presence of 100 microM carbamylcholine, [3H]IP accumulation increased by up to 150% after 60 min. The 50% effective concentration for the response was determined to be 20 microM carbamylcholine and stimulated IP generation was abolished by 1 microM atropine. Enhanced accumulation of IP2 and IP3 was also observed. Determination of the pA2 values for the muscarinic receptor antagonists atropine (8.9), pirenzepine (6.5), AF-DX 116 (11-[[2-[(diethylamino)methyl]-1-piperidinyl] acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) (5.7), and 4-diphenylacetoxy-N-methylpiperidinemethiodide (4-DAMP) (8.6) strongly suggested that the M3 muscarinic receptor subtype was predominantly involved in mediating enhanced PPI degradation. Following treatment of nerve homogenates and myelin-rich fractions with pertussis toxin and [32P]NAD+, the presence of an ADP-ribosylated approximately 40-kDa protein could be demonstrated. The results indicate that peripheral nerve contains key elements of the molecular machinery needed for muscarinic receptor-mediated signal transduction via the phosphoinositide cycle.  相似文献   

4.
Phospholipase C beta (PLC-beta)-coupled G protein-coupled receptor (GPCR) activities traditionally are assessed by measuring Ca2+ triggered by D-myo-inositol 1,4,5-trisphosphate (IP3), a PLC-beta hydrolysis product, or by measuring the production of inositol phosphate using cumbersome radioactive assays. A specific detection of IP3 production was also established using IP3 binding proteins. The short lifetime of IP3 makes this detection very challenging in measuring GPCR responses. Indeed, this IP3 rapidly enters the metabolic inositol phosphate cascade. It has been known for decades that lithium chloride (LiCl) leads to D-myo-inositol 1-phosphate accumulation on GPCR activation by inhibiting inositol monophosphatase, the final enzyme of the IP3 metabolic cascade. We show here that IP1 can be used as a surrogate of IP3 to monitor GPCR activation. We developed a novel homogeneous time-resolved fluorescence (HTRF) assay that correlates perfectly with existing methods and is easily amenable to high-throughput screening. The IP-One assay was validated on various GPCR models. It has the advantage over the traditional Ca2+ assay of allowing the measurement of inverse agonist activity as well as the analysis of PLC-beta activity in any nontransfected primary cultures. Finally, the high assay specificity for D-myo-inositol 1 monophosphate (IP1(1)) opens new possibilities in developing selective assays to study the functional roles of the various isoforms of inositol phosphates.  相似文献   

5.
The analysis of inositol phosphates by anion-exchange HPLC is described. The method employs a citrate buffer gradient to resolve several inositol phosphates including inositol 1-phosphate, inositol 1,4-bisphosphate (IP2), and inositol 1,4,5-trisphosphate (IP3), as well as some of the isomers of these compounds. Since the buffer system does not contain any phosphate, we can use a phosphate assay to examine the chromatographic behavior of phosphate-containing compounds. The method shows good resolution and recovery (greater than 95% for IP2 and IP3). Total analysis time, including reequilibration, is about 90 min. In addition, an isocratic system that can rapidly (less than 10 min) measure IP3 is described. The HPLC system was used to characterize inositol phosphate turnover in thrombin-stimulated platelets and formylmethionyl-leucyl-phenylalanine-stimulated HL-60 cells.  相似文献   

6.
In rat parotid glands, the involvement of the microfilament system in the cellular signal transmission mechanism was tested by measuring the effect of cytochalasin D (which disturbs the microfilament system) on the production of intracellular second messengers. Cytochalasin D (CD) did not affect unstimulated calcium movements (measured by the 45Ca efflux technique) or inositol phosphate production or cAMP accumulation. Neither did it modify the generation of intracellular second messengers induced by activation of the cholinergic muscarinic receptor (calcium and inositol phosphates). CD dit not affect the cAMP accumulation induced by the activation of the beta-adrenergic receptor whereas it strongly inhibited the calcium movements induced by activation of the same receptor. These data suggest that, in rat parotid glands, calcium movements, induced by beta-adrenergic receptor stimulation need an intact microfilament system to occur, whereas the muscarinic pathway (via IP3) does not.  相似文献   

7.
Angiotensin II-induced change in inositol phosphates were studied in cultured rat mesangial cells prelabeled with [3H]myo-inositol. By using anion-exchange high performance liquid chromatography, we could analyzed the change in inositol mono-, bis-, and tris-phosphate more rapidly and easily with higher resolution than the previously reported methods. Angiotensin II rapidly increased inositol 1,4,5-trisphosphate and inositol 1,4-bisphosphate within 15 sec, followed by an increase in inositol 1-monophosphate at 30 sec. Angiotensin II-induced increases in inositol phosphates were dose-dependent and completely blocked by saralasin. These results indicate that angiotensin II induces the production of inositol phosphates including inositol 1,4,5-trisphosphate, an intracellular Ca2+-releasing factor, in cultured rat mesangial cells.  相似文献   

8.
The suppressive effect of glucocorticoids (GC) upon antigen-induced phosphatidylinositol phospholipase C (PI-PLC) activity and inositol phosphate formation by rat basophilic leukemia cells (RBL-2H3) has been characterized. Addition of antigen for a period of 1-30 min enhanced production of [3H]inositol monophosphate (IP1), inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3) by about 5-10-fold. Pretreatment with hydrocortisone (HC) reduced formation of the various inositol phosphates (IPs) and degradation of phosphatidylinositol 4,5-bisphosphate (PIP2) by an average of 50%. Maximal inhibition of hydrolysis of PIP2 and reduction in stimulation of IP3 formation was reached after 4 h of preincubation with 2.10(-6) M of HC. Cycloheximide and RU486, a GC receptor antagonist, completely prevented the inhibitory effect of HC on IP formation. Other GC, dexamethasone (DEX) and triamcinolone (each at 2.10(-7) M) markedly suppressed antigen induced IP3 production, while aldosterone and sex steroids such as estradiol and progesterone (each at 2.10(-6) M) were virtually inactive. Antigen-stimulated phosphorylation of a 18 kDa and other proteins was inhibited by about 60% following pretreatment with the GC. This inhibition was in turn prevented by cycloheximide. DEX also doubled the activity of cellular acid phosphatase activity. The results suggest that the inhibitory effect of GC is specific, receptor-mediated, dependent on protein synthesis and possibly mediated by protein phosphatase activity.  相似文献   

9.
L Y Chau  Y S Hsu  G Y Sun 《Life sciences》1991,49(6):455-463
Leukotriene C4 (LTC4), one of the major constituents of the slow reacting substance of anaphylaxis, induced a dose-dependent hydrolysis of phosphoinositides in [3H]inositol-prelabeled rat basophilic leukemia (RBL-1) cells. The EC50 for LTC4 to elicit the half maximum accumulation of [3H]inositol phosphates (IPs) was around 20 nM. The increase in the formation of [3H]inositol bisphosphate (IP2) and [3H]inositol trisphosphate (IP3) was detectable at 2 min after the stimulation and progressed up to 30 min. Accumulation of [3H]inositol monophosphate (IP1) was observed only during the late phase of 5-30 min in the presence of LiCl. When cells were stimulated with LTC4 and LTD4 together, there was no additive accumulation in [3H]IPs. Pretreatment of cells with either LTC4 or LTD4 resulted in a decrease in production of [3H]IPs on further stimulation with the same agonist. The desensitization appeared to be heterologous since pretreatment of cells with LTC4 attenuated the responsiveness to LTD4. Conversely, pretreatment with LTD4 also diminished the responsiveness to LTC4 markedly. These results suggest that both LTC4- and LTD4-induced hydrolysis of phosphoinositides are mediated through the same effector in RBL-1 cells.  相似文献   

10.
Effects of ATP on accumulation of inositol phosphates and Ca2+ mobilization were investigated in cultured bovine adrenal chromaffin cells. When the cells were stimulated with 30 microM ATP, a rapid and transient rise in intracellular Ca2+ concentration was observed. At the same time, ATP rapidly increased accumulation of inositol phosphates. The concentration-response curve for the ATP-induced Ca2+ mobilization was similar to that for inositol trisphosphate (IP3) accumulation. ATP exerted its maximal effects at 30 microM for either IP3 accumulation or Ca2+ mobilization. The order of the efficacy of the agonists for IP3 accumulation and Ca2+ mobilization at 100 microM was ATP greater than ADP greater than AMP approximately adenosine, AMP (100 microM) and adenosine (300 microM) failed to induce IP3 accumulation and Ca2+ mobilization. Although 100 microM GTP and 100 microM UTP also induced IP3 accumulation and Ca2+ mobilization, their efficacy was less than that of ATP. CTP (100 microM) induced a slight IP3 accumulation, but it did not induce Ca2+ mobilization. Nifedipine (10 microM), a Ca2+ channel antagonist, and theophylline (100 microM), a P1-purinergic receptor antagonist, failed to inhibit the ATP-induced IP3 accumulation and Ca2+ mobilization. The above two cellular responses induced by ATP were also observed in the Ca2+-depleted medium. ATP induced a rapid and transient accumulation of 1,4,5-IP3 (5s), followed by a slower accumulation of 1,3,4-IP3. These results suggest that ATP induces the formation of 1,4,5-IP3 through the P2-purinergic receptor and consequently promotes Ca2+ mobilization from intracellular storage sites in cultured adrenal chromaffin cells.  相似文献   

11.
A novel approach to measuring receptor-stimulated phosphoinositide hydrolysis was developed based on the principles of immobilized metal ion affinity chromatography (IMAC) and scintillation proximity assay (SPA). Hard Lewis metal ions, such as Zr(4+), Ga(3+), Al(3+), Fe(3+), Lu(3+), and Sc(3+), were immobilized on SPA beads via metal chelate and utilized as affinity ligands to entrap inositol phosphates. [3H]Inositol phosphates bound to IMAC-SPA beads through the strong interaction of their phosphate group with the immobilized metal ions. The binding brought [3H]inositol phosphates in close proximity to the scintillant embedded in the SPA beads, thereby allowing the radioactivity to be quantified. Quantification of [3H]inositol phosphate production in cells preincubated with [3H]inositol provided a highly sensitive measurement of phosphoinositide hydrolysis. The utility of this approach was demonstrated in measuring the response mediated by the G-protein-coupled neurokinin NK1 receptor and the tyrosine kinase-linked platelet-derived growth factor (PDGF) receptor. Substance P stimulated phosphoinositide hydrolysis concentration-dependently in CHO cells expressing NK1 receptors with a maximal 12-fold increase in inositol phosphate production. Similarly, PDGF-BB stimulated a 5-fold increase in phosphoinositide hydrolysis in quiescent Swiss 3T3 cells. This new approach is highly sensitive, fast, simple, easily performed on 96-well plates, and amenable for high-throughput screening.  相似文献   

12.
13.
K Hirata  H Akita  M Yokoyama 《FEBS letters》1991,287(1-2):181-184
Vascular endothelial cells, in response to various neurohumoral and physical stimuli, produce an endothelium-derived relaxing factor, a substance which regulates vascular tone. We have demonstrated that oxidized low density lipoprotein (LDL) inhibits endothelium-dependent relaxation. We studied the effect of oxidized LDL on inositol phosphates formation stimulated with bradykinin (BK) in cultured bovine aortic endothelial cells. BK elicited a rapid generation of inositol phosphates from inositol phospholipids. Accumulation of inositol 1,4,5-trisphosphate (IP3) stimulated with BK (0.1 microM) was markedly inhibited by oxidized LDL. However, native LDL had little effect on BK-induced accumulation of IP3. From these results, oxidized LDL inhibits receptor-mediated phosphoinositides hydrolysis and modulates the endothelial function.  相似文献   

14.
Putative role of inositol phospholipid metabolism in neurons   总被引:1,自引:0,他引:1  
F Sladeczek 《Biochimie》1987,69(4):287-296
Inositol phospholipids play a crucial role in the intracellular signal transduction in most cell types. Activation of an enzyme called phospholipase C or PIP2-phosphodiesterase (PIP2-PDE) leads to the production of two second messenger molecules, diacylglycerol (DG) and inositol 1,4,5-triphosphate (IP3). DG activates a kinase called protein kinase C, whereas IP3 mediates the release of Ca2+ from intracellular storage sites. The measurement of IP3 and its degradation products, inositol diphosphate (IP2) and inositol monophosphate (IP1) provides a way of assessing the extent to which this complex system has been activated. In the central nervous system (CNS) most of the studies on the neurotransmitter stimulated formation of inositol phosphates (IPs) have been performed on brain slices, a mixture of mainly neurons and glial cells. The recent development of pure neuronal cultures provides a means of determining which of these responses were of neuronal origin. The purpose of this review is to summarize the results obtained in neurons in primary culture together with a brief appraisal of the possible function of this second messenger system in neurons.  相似文献   

15.
Catecholamines are important in the modulation of smooth muscle contractile activity; this study was undertaken to evaluate adrenoceptor stimulation of intracellular inositol-phosphate production in a genital tract smooth muscle myocyte. DDT1 MF-2 smooth muscle myocytes, derived from a hamster ductus deferens leiomyosarcoma, were loaded with 3H-inositol, incubated in 10 mM LiCl, then stimulated with adrenergic agonists with and without antagonists. Subsequently, the inositol phosphates were isolated by anion-exchange chromatography. In the presence of norepinephrine (NE), inositol trisphosphate (IP3) was produced by 30 s and peaked at 2 min; inositol 1-phosphate was also apparent by 30 s, and continued to increase over 15 min. Clonidine (an alpha-2 agonist), isoproterenol, and NE in the presence of phentolamine or prazosin (an alpha-1 antagonist) failed to increase IP3. In contrast, NE in the presence of yohimbine (an alpha-2 antagonist) or propranolol stimulated IP3 production to levels comparable to that stimulated by NE alone. These studies provide evidence that inositol phosphate production is involved in alpha-1 adrenergic signal transduction in DDT1 MF-2 myocyte.  相似文献   

16.
The accumulation of inositol phosphates (IPs) in response to prostaglandins (PGs) was studied in NG108-15 cells preincubated with myo-[3H]inositol. As a positive control, bradykinin caused accumulation of IPs transiently at an early phase (within 1 min) and continuously during a late phase (15-60 min) of incubation in the cells. PGD2 and PGF2 alpha did not significantly cause the accumulation of IPs at an early phase but significantly stimulated inositol bisphosphate (IP2) and inositol monophosphate (IP) formation at late phase of incubation. The maximum stimulation was obtained at greater than 10(-7) M concentrations of these PGs, the levels being three-and twofold for IP2 and IP1, respectively. 9 alpha, 11 beta-PGF2 has a slight effect but PGE2 and the metabolites of PGD2 and PGF2 alpha have no effect up to 10(-6)M. The effects of PGD2 and PGF2 alpha were not additive, but the effect of each PG was additive to that of bradykinin at a late phase of incubation. Inositol 1-monophosphate was mainly identified in the stimulation by 10(-5) M PGD2 and 10(-5) M PGF2 alpha, whereas both inositol 1-monophosphate and inositol 4-monophosphate were produced in the stimulation by 10(5) M bradykinin. Depletion of extracellular Ca2+ diminished the stimulatory effect of PGD2 and PGF2 alpha and late-phase effect of bradykinin, but simple Ca2+ influx into the cells by high K+, ionomycin, or A23187 failed to cause such late-phase effects. These results suggest that PGD2 and PGF2 alpha specifically stimulate hydrolysis of inositol phospholipids.  相似文献   

17.
In Dictyostelium, extracellular cAMP interacts specifically with cell-surface receptors to promote the accumulation of a variety of intracellular second messengers, such as 3'-5' cyclic adenosine monophosphate (cAMP) and 1,4,5 inositol trisphosphate (IP3). We and others have shown that activation of the cell-surface cAMP receptor can also modulate the expression of the Dictyostelium genome during development. In at least one instance, synthesis of intracellular cAMP is required for appropriate gene regulation. However, the induction of most cAMP-dependent gene expression can occur in the absence of receptor-mediated activation of adenylate cyclase and a consequent accumulation of intracellular cAMP. These results suggest that other intracellular second messengers produced in response to receptor activation may potentially act as signal transducers to modulate gene expression during development. In vertebrate cells, IP3 and diacylglycerol (DAG) are intracellular activators of specific protein kinases; they are produced in equimolar amounts by cleavage of phosphoinositol bisphosphate after a receptor-mediated activation of a membrane-bound phosphodiesterase. IP3 and, thus, by inference, diacyl-glycerol are synthesized in Dictyostelium as a response to cAMP interacting with its cell-surface receptor. Using defined conditions to inhibit the accumulation of extracellular cAMP, we have examined the effects of these compounds on the expression of genes that require cAMP for their maximal expression. Our results suggest that intracellular IP3 and DAG may in part mediate the action of extracellular cAMP on the expression of the Dictyostelium genome.  相似文献   

18.
D Baranes  F T Liu  E Razin 《FEBS letters》1986,206(1):64-68
Stimulation of murine chondroitin sulfate E containing mast cells (E-MC) in vitro either by thrombin or immunologically resulted in a rapid formation of inositol phosphates (IPs). Increase in all of the three IPs (IP1, IP2 and IP3) could be detected 20 s after stimulation. The depletion of Ca2+ from the medium resulted in more than 80% reduction in beta-hexosaminidase release from either thrombin or IgE antigen stimulated cells. However, both thrombin and IgE antigen increased the formation of IP3 under these conditions independent of the presence of extracellular Ca2+.  相似文献   

19.
Alpha 1 adrenergic receptor function in senescent Fischer 344 rat aorta   总被引:2,自引:0,他引:2  
M D Johnson  A Wray 《Life sciences》1990,46(5):359-366
There have been numerous conflicting reports concerning alpha 1 adrenergic receptor-mediated blood vessel contraction during aging and possible changes in alpha 1 receptor transduction mechanisms have not been investigated. These studies assess capacity of the aging vascular alpha 1 receptor to stimulate production of inositol phosphates, which are its intracellular second messengers, and to elicit a contractile response via this pathway. Aortic ring segments from mature adult (6 month old) and senescent (24 month old) Fischer 344 rats were incubated with [3H]myo-inositol and then stimulated with the alpha 1 agonist norepinephrine (NE, 10(-7)M-3 x 10(-5)M) in the presence of LiCl (10mM), an inhibitor of inositol phosphate metabolism. There was a substantial increase in inositol phosphate accumulation throughout the dose range in aortic rings from 24 month old rats compared to 6 month old rats. This is an alpha 1 receptor response since it is blocked by the alpha 1 antagonist prazosin but not by the alpha 2 antagonist yohimbine. Aortic inositol phosphate accumulation in response to serotonin did not change with age. To assess second messenger stimulated contraction, aortic ring segments were placed in Ca++ free buffer and then stimulated with NE. Under these conditions Ca++ influx is eliminated and contraction depends on the actions of intracellular second messengers. There is an age-related reduction in aortic contraction in Ca++ free buffer. These results suggest that aortic alpha 1 receptor-mediated formation of inositol phosphate intracellular second messengers is enhanced during aging. Despite this, the capacity of senescent arteries to elicit contraction utilizing second messenger pathways seems to be deficient.  相似文献   

20.
Smooth muscle cells (SMC) from human bronchi were isolated by elastase treatment, subcultured, and characterized by their positive reaction with a monoclonal antibody against alpha-smooth muscle actin (alpha SMA). In each cell line tested, at least 95% of the cells were positively stained. The functional properties of these cells were examined by measuring the metabolism of inositol phosphates (IPs). For that purpose, cells were incubated for 3 days before reaching confluency in the presence of myo-[3H]inositol in order to label the phosphoinositide pool, and the various [3H]IPs were separated by HPLC on a SAX column with a phosphate gradient. IP1 isomers were separated in three peaks; IP2, IP3, IP4, IP5 and IP6 (phytic acid) were each eluted as single peaks. The identity of the [3H]peaks was verified with corresponding [3H]IP standards. The accumulation of [3H]IPs was measured by incubating cells up to 30 min in the presence of 10 mM LiCl, with or without a bronchoconstrictor agent (carbachol, histamine, PGF2 alpha). Histamine, 10(-4) M, elicited a four times larger IP accumulation than carbachol, 10(-4) M, and than PGF2 alpha, 5 10(-5) M. Dose-response curves were established for histamine and carbachol in the range 10(-7)-10(-4) M. At 10(-7) M, carbachol was more effective than histamine in stimulating the IP metabolism. Atropine blocked the response to carbachol, and diphenhydramine inhibited the effect of histamine, indicating the specificity of the response to the agonists. These results indicate that cultured human bronchial SMC are a suitable preparation for studying physiological aspects of membrane transduction in the airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号