首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binding of recombinant fragments of the C-terminal cell-binding domains of the two large exotoxins, toxin A (TcdA) and toxin B (TcdB), expressed by Clostridium difficile and a library consisting of the most abundant neutral and acidic human milk oligosaccharides (HMOs) was examined quantitatively at 25°C and pH 7 using the direct electrospray ionization mass spectrometry (ES-MS) assay. The results of the ES-MS measurements indicate that both toxin fragments investigated, TcdB-B1 and TcdA-A2, which possess one and two carbohydrate binding sites, respectively, bind specifically to HMOs ranging in size from tri- to heptasaccharides. Notably, five of the HMOs tested bind to both toxins: Fuc(α1-2)Gal(β1-4)Glc, Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc, Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc and Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc. However, the binding of the HMOs is uniformly weak, with apparent affinities ≤10(3?)M(-1). The results of molecular docking simulations, taken together with the experimental binding data, suggest that a disaccharide moiety (lactose or lactosamine) represents the core HMO recognition element for both toxin fragments. The results of a Verocytotoxicity neutralization assay reveal that HMOs do not significantly inhibit the cytotoxic effects of TcdA or TcdB. The absence of protection is attributed to the very weak intrinsic affinities that the toxins exhibit towards the HMOs.  相似文献   

2.
A polymerase chain reaction (PCR) was used to identify the genes encoding the major toxins of Clostridium perfringens in faeces of goats. When pure cultures of Cl. perfringens types A, B, C, D and E were used as templates in the PCR, amplicons were observed on the agarose gel as bands at approximately the 247 (alpha primers), 1025 (beta primers), 403 (epsilon primers) and 298 (iota primers) bp level of the DNA marker. When used to identify different types of Cl. perfringens in samples artificially spiked with these micro-organisms, the PCR detected as few as 1–1·5×102 cfu g−1 of the five types of Cl. perfringens tested. The PCR technique allowed the identification and typing of Cl. perfringens strains in faeces of goats, without recourse to other techniques such as the mouse neutralization test.  相似文献   

3.
Clostridium difficile, a highly infectious bacterium, is the leading cause of antibiotic-associated pseudomembranous colitis. In 2009, the number of death certificates mentioning C. difficile infection in the U.K. was estimated at 3933 with 44% of certificates recording infection as the underlying cause of death. A number of virulence factors facilitate its pathogenicity, among which are two potent exotoxins; Toxins A and B. Both are large monoglucosyltransferases that catalyse the glucosylation, and hence inactivation, of Rho-GTPases (small regulatory proteins of the eukaryote actin cell cytoskeleton), leading to disorganization of the cytoskeleton and cell death. The roles of Toxins A and B in the context of C. difficile infection is unknown. In addition to these exotoxins, some strains of C. difficile produce an unrelated ADP-ribosylating binary toxin. This toxin consists of two independently produced components: an enzymatic component (CDTa) and the other, the transport component (CDTb) which facilitates translocation of CDTa into target cells. CDTa irreversibly ADP-ribosylates G-actin in target cells, which disrupts the F-actin:G-actin equilibrium leading to cell rounding and cell death. In the present review we provide a summary of the current structural understanding of these toxins and discuss how it may be used to identify potential targets for specific drug design.  相似文献   

4.
5.
In cultured cells the cytopathic effects (CPE) of Clostridium difficile toxins A and B are superficially similar. The irreversible CPEs involve a reorganization of the cytoskeleton, but the molecular details of the mechanism(s) of action are unknown. As part of the work to elucidate the events leading to the CPE, cultured cells were preincubated with agents known to either stimulate or inhibit some major signal transduction pathways, whereupon toxin was added and the development of the CPE was followed. Both toxin-induced CPEs were enhanced by phorbol esters and mezerein, which stimulate protein kinase C, while they were inhibited by the phospholipase A2 inhibitors quinacrine and 4-bromophenacylbromide. Agents affecting certain G-proteins, cGMP and cAMP levels, phosphatases, prostacyclin, lipoxygenase, and phospholipase C did not affect the development of the CPE of either toxin. Thus, the cytoskeletal effect induced by toxins A or B appears to require PLA2 activity and involves at least part of a protein kinase C-dependent pathway, but not pertussis toxin-sensitive G-proteins, cyclic nucleotides, eicosanoid metabolites, or phospholipase C activity. In addition, both toxins were shown to activate phospholipase A2.  相似文献   

6.
The prevalence of Clostridium difficile and its toxins (A and B) in HIV-positive children in Poland was investigated in a group of 18 children, aged 6 months to 8 1/2 years. Stool samples were tested using an antigen detection method for toxin A/B, cytotoxicity-neutralization and culture. In 3 cases (17%) C. difficile toxins were detected in both stool samples and strains recovered from culture. The three strains isolated were shown by PCR methods to contain toxins A and B genes. All children had been treated previously with antimicrobial and antiviral agents. All three C. difficile-positive children had mild diarrhea that resolved without specific therapy. Further studies involving a large number of children and molecular analyses of isolated C. difficile strains are necessary to determine the frequency and rate of carriage of C. difficile strains among HIV-positive children in Poland.  相似文献   

7.
Clostridium difficile toxinotypes are groups of strains defined by changes in the PaLoc region encoding two main virulence factors: toxins TcdA and TcdB. Currently, 24 variant toxinotypes (I-XXIV) are known, in addition to toxinotype 0 strains, which contain a PaLoc identical to the reference strain VPI 10463. Variant toxinotypes can also differ from toxinotype 0 strains in their toxin production pattern. The most-studied variant strains are TcdA-, TcdB+ (A-B+) strains and binary toxin CDT-producing strains. Variations in toxin genes are also conserved on the protein level and variant toxins can differ in size, antibody reactivity, pattern of intracellular targets (small GTPases) and consequently in their effects on the cell. Toxinotypes do not correlate with particular forms of disease or patient populations, but some toxinotypes (IIIb and VIII) are currently associated with disease of increased severity and outbreaks worldwide. Variant toxinotypes are very common in animal hosts and can represent from 40% to 100% of all isolates. Among human isolates, variant toxinotypes usually represent up to 10% of strains but their prevalence is increasing.  相似文献   

8.
Toxin A (TcdA) and Toxin B (TcdB) are the major pathogenicity factors of the Clostridium difficile-associated diarrhoea (CDAD). The single-chained protein toxins enter their target cells by receptor-mediated endocytosis. New data show the critical role of auto-catalytic processing for target cell entry. Inside the cell, the toxins mono-glucosylate and thereby inactivate low molecular mass GTP-binding proteins of the Rho subfamily. Toxin-treated cells respond to RhoA glucosylation with up-regulation and activation of the pro-apoptotic Rho family protein RhoB. These data reinforce the critical role of the glucosyltransferase activity for programmed cell death and show that TcdA and TcdB, generally classified as broad-spectrum inhibitors of Rho proteins, are also capable of activating Rho proteins.  相似文献   

9.
目的 比较粪便标本中艰难梭菌三种培养方法的差异性,寻找适合临床实验室使用的艰难梭菌培养方法。方法 将健康儿童的300份粪便标本分别用快速芽孢孵育法、乙醇直接处理法、富集芽孢培养法进行培养,并对三种培养方法的差异性进行统计学比较。结果 300份粪便标本快速芽孢孵育法培养出艰难梭菌51例,检出率为17.0%;乙醇直接处理法培养出48例,检出率为16.0%;富集芽孢培养法培养出44例,检出率为14.7%。三种方法的检出率差异无统计学意义(P=0.7352,P>0.05)。结论 乙醇直接处理法、快速芽孢孵育法简单快速,适合临床实验室进行艰难梭菌的快速培养;富集芽孢培养法杂菌少,适合大量艰难梭菌培养便于结果的观察及进一步的处理。  相似文献   

10.
Comparative sequence analysis of the Clostridium difficile toxins A and B.   总被引:16,自引:0,他引:16  
Summary The six clones pTB112, pTB324, pTBs12, pCd122, pCd14 and pCdl3 cover thetox locus ofClostridium difficile VPI 10463. This region of 19 kb of chromosomal DNA contains four open reading frames including the completetoxB andtoxA genes. The two toxins show 63% amino acid (aa) homology, a relatedness that had been predicted by the cross-reactivity of some monoclonal antibodies (mAb) but that is in contrast to the toxin specificity of polyclonal antisera. A special feature of ToxA and ToxB is their repetitive C-termini. We define herein 19 individual CROPS (combinedrepetitiveoligopeptides of 20–50 as length) in the ToxB C-terminus, which are separable into five homologous groups. Comparison of the as sequences of the N-terminal two-thirds of ToxA and ToxB revealed three marked structures, a cluster of 172 hydrophobic, highly conserved as in the centre of both toxins, a sequence of 120 residues with an accumulation of highly conserved arginine, cysteine, histidine, methionine, and tryptophan residues, and a stretch of 248 less conserved aa. The probable function of these domains is discussed. Structural and functional homologies of ToxA and ToxB indicate that both genes have a common ancestor and may have evolved by gene duplication, with subsequent recombination and mutation, as has been reported for streptococcal glucosyltransferases (Gtf).  相似文献   

11.
In this work, the ability of S-layer proteins from kefir-isolated Lactobacillus kefir strains to antagonize the cytophatic effects of toxins from Clostridium difficile (TcdA and TcdB) on eukaryotic cells in vitro was tested by cell detachment assay. S-layer proteins from eight different L. kefir strains were able to inhibit the damage induced by C. difficile spent culture supernatant to Vero cells. Besides, same protective effect was observed by F-actin network staining. S-layer proteins from aggregating L. kefir strains (CIDCA 83115, 8321, 8345 and 8348) showed a higher inhibitory ability than those belonging to non-aggregating ones (CIDCA 83111, 83113, JCM 5818 and ATCC 8007), suggesting that differences in the structure could be related to the ability to antagonize the effect of clostridial toxins. Similar results were obtained using purified TcdA and TcdB. Protective effect was not affected by proteases inhibitors or heat treatment, thus indicating that proteolytic activity is not involved. Only preincubation with specific anti-S-layer antibodies significantly reduced the inhibitory effect of S-layer proteins, suggesting that this could be attributed to a direct interaction between clostridial toxins and L. kefir S-layer protein. Interestingly, the interaction of toxins with S-layer carrying bacteria was observed by dot blot and fluorescence microscopy with specific anti-TcdA or anti-TcdB antibodies, although L. kefir cells did not show protective effects. We hypothesize that the interaction between clostridial toxins and soluble S-layer molecules is different from the interaction with S-layer on the surface of the bacteria thus leading a different ability to antagonize cytotoxic effect. This is the first report showing the ability of S-layer proteins from kefir lactobacilli to antagonize biological effects of bacterial toxins. These results encourage further research on the role of bacterial surface molecules to the probiotic properties of L. kefir and could contribute to strain selection with potential therapeutic or prophylactic benefits towards CDAD.  相似文献   

12.
13.
14.
《Anaerobe》2009,15(6):261-265
Due to increased interest directed to Clostridium difficile-associated infections, a questionnaire survey of laboratory diagnostics of toxin-producing C. difficile was conducted in Finland in June 2006. Different aspects pertaining to C. difficile diagnosis, such as requests and criteria used for testing, methods used for its detection, yearly changes in diagnostics since 1996, and the total number of investigations positive for C. difficile in 2005, were asked in the questionnaire, which was sent to 32 clinical microbiology laboratories, including all hospital-affiliated and the relevant private clinical microbiology laboratories in Finland. The situation was updated by phone and email correspondence in September 2008. In June 2006, 28 (88%) laboratories responded to the questionnaire survey; 24 of them reported routinely testing requested stool specimens for C. difficile. Main laboratory methods included toxin detection (21/24; 88%) and/or anaerobic culture (19/24; 79%). In June 2006, 18 (86%) of the 21 laboratories detecting toxins directly from feces, from the isolate, or both used methods for both toxin A (TcdA) and B (TcdB), whereas only one laboratory did so in 1996. By September 2008, all of the 23 laboratories performing diagnostics for C. difficile used methods for both TcdA and TcdB. In 2006, the number of specimens processed per 100,000 population varied remarkably between different hospital districts. In conclusion, culturing C. difficile is common and there has been a favorable shift in toxin detection practice in Finnish clinical microbiology laboratories. However, the variability in diagnostic activity reported in 2006 creates a challenge for national monitoring of the epidemiology of C. difficile and related diseases.  相似文献   

15.
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive, efficient and reproducible technique for studying gene expression. Identification of stably expressed reference genes is required to avoid bias in these studies yet mostly unvalidated reference genes are used in studying gene expression in Clostridium difficile. Here, we sought to identify a set of stable reference genes used to normalize C. difficile expression data comparing exponential versus stationary phases of growth. Eight candidate reference genes (rpoA, rrs, gyrA, gluD, adk, rpsJ, tpi, and rho) were assessed in 3 C. difficile genotypes (ribotypes 027, 078, and 001). The primers were analyzed for efficiency and the 8 genes were ranked according to their stability. Overall, the genes rrs, adk, and rpsJ ranked among the most stable. Identification of the most stable genes was, however, strain dependent and suggests that selection of reference genes in a heterogeneous species, such as C. difficile, requires multiple genes to be assessed to confirm their stability within the strains being studied.  相似文献   

16.
17.
The biological activity of the filtrates of 29 C. difficile strains was studied in vivo (suckling white mice) and in vitro (cell cultures of different species and origin). The action of the filtrates on the experimental models in vivo was evaluated from the cytotoxic effect index, while in vitro the intensity of the cytotoxic effect was evaluated from the percentage of dead cells in the monolayer. The results of the comparative determination of toxicity characteristics in vivo and in vitro demonstrated that cell cultures were more sensitive experimental models than suckling white mice. The use of cell cultures permitted the quantitative evaluation of the cytotoxic activity of the filtrates under study, as well as the detection of their cell-directed action at minimal concentrations.  相似文献   

18.
The action of Clostridium difficile toxins A and B depends on processing and translocation of the catalytic glucosyltransferase domain into the cytosol of target cells where Rho GTPases are modified. Here we studied the processing of the toxins. Dithiothreitol and beta-mercaptoethanol induced auto-cleavage of purified native toxin A and toxin B into approximately 250/210- and approximately 63-kDa fragments. The 63-kDa fragment was identified by mass spectrometric analysis as the N-terminal glucosyltransferase domain. This cleavage was blocked by N-ethylmaleimide or iodoacetamide. Exchange of cysteine 698, histidine 653, or aspartate 587 of toxin B prevented cleavage of full-length recombinant toxin B and of an N-terminal fragment covering residues 1-955 and inhibited cytotoxicity of full-length toxin B. Dithiothreitol synergistically increased the effect of myo-inositol hexakisphosphate, which has been reported to facilitate auto-cleavage of toxin B (Reineke, J., Tenzer, S., Rupnik, M., Koschinski, A., Hasselmayer, O., Schrattenholz, A., Schild, H., and Von Eichel-Streiber, C. (2007) Nature 446, 415-419). N-Ethylmaleimide blocked auto-cleavage induced by the addition of myo-inositol hexakisphosphate, suggesting that cysteine residues are essential for the processing of clostridial glucosylating toxins. Our data indicate that clostridial glucosylating cytotoxins possess an inherent cysteine protease activity related to the cysteine protease of Vibrio cholerae RTX toxin, which is responsible for auto-cleavage of glucosylating toxins.  相似文献   

19.
Toxins A and B from the anaerobic bacterium Clostridium difficile are the causative agents of the antibiotic-associated pseudomembraneous colitis. At the subcellular level, they inhibit the Rho family GTPases, thus causing alterations of the actin cytoskeleton. The cytoskeletal integrity is also controlled by the redox state of cells. Therefore, we have evaluated whether an oxidative imbalance could be involved in the toxin-induced cytopathic effects. Our results indicate that both toxins induce oxidative stress with a significant depletion of protein SH-groups. These responses and the cytoskeleton-dependent cell retraction and rounding are significantly counteracted by N-acetylcysteine but not by alpha-tocopherol. Our study provides the first evidence that the thiol supplier N-acetylcysteine impairs the cellular intoxication by acting on the cytoskeleton integrity. This also suggests a possible beneficial role for this drug during therapeutic intervention.  相似文献   

20.
Clostridium difficile causes pseudomembranous colitis and is responsible for many cases of nosocomial antibiotic-associated diarrhea. Major virulence factors of C. difficile are the glucosylating exotoxins A and B. Both toxins enter target cells in a pH- dependent manner from endosomes by forming pores. They translocate the N-terminal catalytic domains into the cytosol of host cells and inactivate Rho guanosine triphosphatases by glucosylation. The crystal structure of the catalytic domain of toxin B was solved in a complex with uridine diphosphate, glucose, and manganese ion, exhibiting a folding of type A family glycosyltransferases. Crystallization of fragments of the C-terminus of toxin A, which is characterized by polypeptide repeats, revealed a solenoid-like structure often found in bacterial cell surface proteins. These studies, which provide new insights into structure, uptake, and function of the family of clostridial glucosylating toxins, are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号