首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the development of microcells in the human sarcoma cell line HT-1080 after interference with thiophosphamidum. We found that damaged interphase macrocells located at the projection of the nucleolus may form one or several microcells. The micronuclei of the microcells intensively incorporate the thymidine analogue 5-bromo-2'-deoxyuridine and strongly express argyrophilic nucleolar organiser region proteins. At an early phase of the development, the micronuclei contain fragmented DNA, but in subsequent phases, the micronuclei accumulate polymeric DNA, simultaneously with an increase in their size. After desintegration of the damaged macrocell, the microcells appear in the intercellular space. The microcells can enter mitosis and they strongly express the lung resistance protein. Electron microscopic observations suggest that coiled bodies are involved in the development of the microcells. Since the observed path of microcell formation differs from apoptotic cell fragmentation into apoptotic bodies, we propose a new term for this microcell development: sporosis. We suggest that self-renewal of the tumour stem cells is likely based on sporosis.  相似文献   

2.
Summary Mitotic dynamics and the kinetics of mass induction of micronuclei after treatment of Nicotiana plumbaginifolia cell suspensions with the spindle toxin amiprophos-methyl (APM) are reported. The addition of APM to suspension cells resulted in the accumulation of a large number of metaphases. The course of mitosis was strikingly different from normal. Metaphase chromosomes showed neither centromere division nor separation of chromatids. Single chromosomes and groups of 2 or more chromosomes were scattered over the cytoplasm. After 5–6 h of APM treatment, chromosomes decondensed and formed micronuclei. When treatment duration was increased, the frequency of cells with micronuclei as well as those showing lobed micronuclei increased. Similarly, with an increase in APM concentration the frequency of cells with micronuclei increased. After removal of APM, chromosome grouping disappeared, cells showing lobed micronuclei further increased and mitoses with doubled chromosome numbers appeared in the next cell division. Cytological observations and DNA measurements revealed that several sub-diploid micronuclei containing 1 or a few chromosomes can be obtained, and that flow cytometry can detect and sort out these micronuclei. The applications of micronuclei for genetic manipulation of specific chromosomes and gene mapping are indicated.  相似文献   

3.
Macroautophagy is known to participate in the quality control and turnover of cytoplasmic organelles, yet there is little evidence that macroautophagy targets nuclei in mammalian cells. Here, we investigated whether autophagy may target micronuclei, which arise as a result of deficient bipolar chromosome segregation in cells exposed to cell cycle perturbations. After removal of several distinct cell cycle blockers (nocodazole, cytochalasin D, hydroxyurea or SP600125), cells manifested an increase in the frequency of micronuclei (positive for histone H2B-RFP) as well as an increase in autophagic puncta (positive for GFP-LC3) over several days. A small but significant percentage of micronuclei co-localized with GFP-LC3 in autophagy-competent cells and this co-localization was lost after knockdown of ATG5 or ATG7. Electron microscopy analyses confirmed autophagic sequestration of micronuclei. "Autophagic micronuclei" (GFP-LC3+) were also decorated with p62/SQSTM1, while non-autophagic (GFP-LC3-) micronuclei where p62/SQSTM1 negative. In addition, GFP-LC3+ micronuclei exhibited signs of envelope degradation and γH2AX+ DNA damage foci, yet stained less intensively for chromatin markers, whereas GFP-LC3- micronuclei were surrounded by an intact envelope and rarely exhibited markers or DNA damage. These results indicate that micronuclei can be subjected to autophagic degradation. Moreover, it can be speculated that removal of micronuclei may contribute to the genome-stabilizing effects of autophagy.  相似文献   

4.
Micronuclei are formed from chromosomes and chromosomal fragments that lag behind in anaphase and are left outside daughter nuclei in telophase. They may also be derived from broken anaphase bridges. Nuclear buds, micronucleus-like bodies attached to the nucleus by a thin nucleoplasmic connection, have been proposed to be generated similarly to micronuclei during nuclear division or in S-phase as a stage in the extrusion of extra DNA, possibly giving rise to micronuclei. To better understand these phenomena, we have characterized the contents of 894 nuclear buds and 1392 micronuclei in normal and folate-deprived 9-day cultures of human lymphocytes using fluorescence in situ hybridization with pancentromeric and pantelomeric DNA probes. Such information has not earlier been available for human primary cells. Surprisingly, there appears to be no previous data on the occurrence of telomeres in micronuclei (or buds) of normal human cells in general. Our results suggest that nuclear buds and micronuclei have partly different mechanistic origin. Interstitial DNA without centromere or telomere label was clearly more prevalent in nuclear buds (43%) than in micronuclei (13%). DNA with only telomere label or with both centromere and telomere label was more frequent in micronuclei (62% and 22%, respectively) than in nuclear buds (44% and 10%, respectively). Folate deprivation especially increased the frequency of nuclear buds and micronuclei harboring telomeric DNA and nuclear buds harboring interstitial DNA but also buds and micronuclei with both centromeric and telomeric DNA. According to the model we propose, that micronuclei in binucleate lymphocytes primarily derive from lagging chromosomes and terminal acentric fragments during mitosis. Most nuclear buds, however, are suggested to originate from interstitial or terminal acentric fragments, possibly representing nuclear membrane entrapment of DNA that has been left in cytoplasm after nuclear division or excess DNA that is being extruded from the nucleus.  相似文献   

5.
Huang Y  Hou H  Yi Q  Zhang Y  Chen D  Jiang E  Xia Y  Fenech M  Shi Q 《DNA Repair》2011,10(6):629-638
Micronuclei are closely related to DNA damage. The presence of micronuclei in mammalian cells is a common phenomenon post ionizing radiation. The level of micronucleation in tumor cells has been used to predict prognosis after radiotherapy in many cancers. In order to understand how irradiation-induced micronuclei affect cell fate, we performed extensive long-term live cell imaging on X-irradiated nasopharyngeal carcinoma (NPC) cells. To visualize the dynamics of micronuclei more clearly, chromosomes were stably labeled with red fluorescent protein (RFP) by targeting to human histone H2B. Initially, significantly more micronuclei were observed in radiosensitive cells than in radioresistant cells post irradiation. Additionally, cells with micronuclei were found to be more likely to die or undergo cell cycle arrest when compared with micronucleus-free cells after irradiation, and the more micronuclei the cells contained the more likely they would die or undergo arrest. Moreover, micronucleated cells showed predisposition to produce daughter cells with micronuclei through chromosome lagging. Fluorescence in situ hybridization using human pan-centromeric probes revealed that about 70% of these micronuclei and lagging chromosomes did not contain centromeric signals. Finally, DNA damage was more severe and p38 stress kinase activity was higher in micronucleated cells than in micronucleus-free cells as shown by phospho-H2AX and phospho-p38 immunofluorescence staining. Altogether, our observations indicated that the presence of micronuclei coupled with activated DNA damage response could compromise the proliferation capacity of irradiated cells, providing the evidence and justification for using micronucleus index as a valuable biomarker of radiosensitivity.  相似文献   

6.
7.
A micronucleus test in combination with fluorescent in situ hybridization (FISH) using telomere-, centromere-specific probes and 5S and 25S rDNA was used for a detailed analysis of the effects of gamma ray irradiation on the root tip meristem cells of barley, Hordeum vulgare (2n = 14). FISH with four DNA probes was used to examine the involvement of specific chromosomes or chromosome fragments in gamma ray-induced micronuclei formation and then to explain their origin. Additionally, a comparison of the possible origin of the micronuclei induced by physical and chemical treatment: maleic hydrazide (MH) and N-nitroso-N-methylurea (MNU) was done. The micronuclei induced by gamma ray could originate from acentric fragments after chromosome breakage or from whole lagging chromosomes as a result of a dysfunction of the mitotic apparatus. No micronuclei containing only centromeric signals were found. An application of rDNA as probes allowed it to be stated that 5S rDNA–bearing chromosomes are involved in micronuclei formation more often than NOR chromosomes. This work allowed the origin of physically- and chemically-induced micronuclei in barley cells to be compared: the origin of micronuclei was most often from terminal fragments. FISH confirmed its usefulness in the characterization of micronuclei content, as well as in understanding and comparing the mechanisms of the actions of mutagens applied in plant genotoxicity.  相似文献   

8.
The hypothesis of indirect mitotic nondisjunction was tested in plant and mammalian cells. This hypothesis states that micronuclei derived from lagging chromosomes or chromatids are able to perform DNA synthesis and undergo mitotic condensation synchronously with main nuclei. Hence, as chromosomes, they can be moved to spindle poles together with the chromosomes of the main nuclei during mitosis. In that way chromosomes lost as micro-nuclei can be reincorporated in the main nuclei. In order to test this, both Vicia faba meristematic cells and cells of a Chinese hamster line (Cl-1) were treated with low doses of colchicine. Mitotic anomalies, micronuclei and cells with a polyploid or aneuploid karyotype were scored at different fixation times. A detailed analysis was performed on single chromosome misdistributions, as well as on micronuclei and cells with aneuploid karyotypes derived from single chromosome misdistributions. Indirect mitotic nondisjunction was shown to play a primary role in the origin of aneuploid karyotypes in Vicia faba, but not in Cl-1 cells.  相似文献   

9.
The stability of chromosomes carrying amplified CAD (carbamyl phosphate synthetase-aspartate transcarbamylase-dihydroorotase) or DHFR (dihydrofolate reductase) genes was studied in V79 Chinese hamster cell derivatives resistant to PALA (N-phosphonacetyl-L-aspartate) and MTX (methotrexate), respectively. Cells were maintained in the presence of the selective drugs during the study. In both metaphase chromosomes and interphase nuclei, amplified regions were localized by in situ hybridization. In MTX-resistant cells, the amplification-bearing chromosome moved sluggishly at anaphase and gave rise to bud-shaped formations in interphase nuclei. It is suggested that these buds could eventually separate as micronuclei. In both MTX- and PALA-resistant cells, amplified DNA was observed in micronuclei in interphase and in displaced chromosomes in metaphase. Finally, amplification-bearing dicentric chromosomes were found in both drug-resistant cell lines. Cumulatively, these observations indicate that the presence of the amplified region in a chromosome renders it unstable: chromosomes bearing an amplified region tended to be excluded from cells, and rearrangements were more frequent than in normal chromosomes.  相似文献   

10.
11.
Using methods of in vivo observation and ultrathin sectioning, it is shown that chromosomes of metaphase PE cells, previously treated with diluted Henk's solutions (70, 30 and 15%), undergo some structural transitions resulting in the formation of micronuclei. At the early stages of hypotonic treatment chromosomes are seen considerably swollen and losing the higher levels of organization, including the chromonema and chromomeres. The chromosomal bodies are formed by DNP fibers 10-25 nm in diameter making loops radiating from the central part of the chromatids. Chromosomes are capable of recondensing from this state by consecutive reconstitution of G-bands, chromomeres and the chromonema. The subsequent secondary decondensation of chromosomes is analogous to telophase decondensation at the normal mitosis, but it results in the formation of a great number of small nuclei (micronuclei). The chromatin structure in micronuclei as well as their ability to synthesize RNA and to replicate DNA show these effects to be reversible. It has been suggested that the loop organization of DNP may be essential for sustaining the structural integrity of the mitotic chromosome.  相似文献   

12.
13.
A method for the isolation of micronuclear DNA from Paramecium tetraurelia has been developed. After cell lysis, a low speed centrifugation at 1,000 g is used to remove all of the unbroken cells and macronuclei and approximately two thirds of the macronuclear fragments. Next a higher speed centrifugation of 9,000 g sediments the micronuclei and frees them from small particulates and soluble constituents. Advantage is then taken of the fact that micronuclei have a lower density than do macronuclear fragments in 45%-60% Percoll. Micronuclei float to the top during centrifugation at 24,000 g, while macronuclear fragments sediment. After several cycles of centrifugation in Percoll, the micronuclei, although heavily contaminated with cytoplasmic components, are essentially free of macronuclei and macronuclear fragments. Micronuclear DNA can then be extracted from the suspension. The whole procedure is very rapid and in about an hour micronuclear and macronuclear DNA can be separated. About 2 micrograms of micronuclear DNA can be obtained from 6 x 10(7) paramecia. We find that there are internal sequences in the micronuclear A gene DNA in wild type cells which are eliminated when the micronuclei develop into macronuclei. They yield unique restriction fragments for micronuclei and macronuclei. Therefore the purity of the preparations is easily monitored by probing Southern blots of restriction enzyme-digested DNA with the cloned A gene. No differences have been found between the micronuclear A gene in wild type and the d48 mutant.  相似文献   

14.
The short-term evolution of micronuclei derived from acentric fragments and whole chromosomes was studied in root tips of Vicia faba. Micronuclei were induced by X-rays (30 cGy and 120 cGy) and colchicine (10(-5) M and 3 X 10(-4) M). Frequencies of chromosome breakage or loss of micronuclei in interphase and mitotic cells were studied. The DNA content of micronuclei in interphase cells was also measured. Micronuclei derived from whole chromosome showed a higher probability to survive and to undergo mitotic condensation in synchrony with main nuclei than micronuclei derived from an acentric fragment. PCC (Premature Chromosome Condensation) was not observed for both types of micronuclei in Vicia faba, in contrast to the ones reported in mammalian cells in culture.  相似文献   

15.
Summary A method is described to generate microcells from human lymphobalsts for use in microcell-mediated chromosome transfer (MMCT). Micronuclei were induced in cells from a human lymphoblastic cell line by prolonged colcemid treatment, and were separated from these lymphoblasts by: (a) attaching the cells to Concanvalin A coated plastic slides designed for enucleation, and (b) centrifuging the slides in medium containing cytochalasin B. Microcells of less than 3 μm in diameter were fused with thymidine kinase negative mouse fibroblast (LMTK). HAT medium (hypoxanthine, aminopterin and thymidine) was used to select microcell hybrids expressing thymidine kinase activity. Positive clones were isolated and Q-banded for chromosome analysis. Unlike previous methods this procedure permits microcells to be easily generated from lymphoid cells. This methodology of enucleation of microcells may be extended to a variety of other donor cell types which can be micronucleated but which do not adhere tightly to enucleation slides and do not exhibit extrusion subdivision. This feature makes our methodology particularly useful for constructing a library of hybrid clones containing one or a few human chromosomes.  相似文献   

16.
The in vitro micronucleus test with Syrian hamster embryo (SHE) cells assays the induction of micronuclei by chemical agents. Both chromosome fragments and lagging chromosomes can give rise to micronuclei. Nevertheless, only limited information is available on the ultrastructure of micronuclei and the mechanisms of their formation. Diethylstilbestrol (DES), a non-mutagenic carcinogen, as well as its analogue 3.3'-DES induce micronuclei in SHE cells. A comparison of the dose response of DES-induced micronucleus formation with the previously published ones for aneuploidy and transformation shows that all 3 run in parallel. Thus, a functional relationship between these endpoints, in the SHE system, may be implied. The present study is designed to address the formation of micronuclei using supravital UV microscopy, to test for the presence of defined chromosome domains within micronuclei using immunocytochemistry, and to define aspects of their ultrastructure by electron microscopy. Supravital UV microscopy showed that 3.3'-DES induces displacement of chromosomes/chromatids during prophase/anaphase and formation of micronuclei during cytokinesis. Immunocytochemistry revealed that micronuclei contain, at high frequencies, CREST antibody-reactive kinetochores, indicating the presence of whole chromosomes or centric fragments in these structures. Moreover, transmission electron microscopy showed that micronuclei exhibit ultrastructural details typical of interphase nuclei. Specifically, micronuclei exhibited morphological evidence of a nuclear lamina and segregation of karyoplasm into euchromatic and heterochromatic regions. All micronuclei examined were enclosed by a nuclear envelope of normal morphology and showed nuclear pore complexes. Together the findings provide evidence that DES interferes with the mitotic apparatus as early as prophase, resulting in the formation of micronuclei and, as a consequence, in the loss of chromatids or chromosomes.  相似文献   

17.
The present study is a rare example of a detailed characterization of chromosomal aberrations by identification of individual chromosomes (or chromosome arms) involved in their formation in plant cells by using fluorescent in situ hybridization (FISH). In addition, the first application of more than 2 DNA probes in FISH experiments in order to analyse chromosomal aberrations in plant cells is presented. Simultaneous FISH with 5S and 25S rDNA and, after reprobing of preparations, telomeric and centromeric DNA sequences as probes, were used to compare the cytogenetic effects of 2 chemical mutagens: N-nitroso-N-methylurea (MNU) and maleic hydrazide (MH) on root tip meristem cells of Hordeum vulgare (2n=14). The micronucleus (MN) test combined with FISH allowed the quantitative analysis of the involvement of specific chromosome fragments in micronuclei formation and thus enabled the possible origin of mutagen-induced micronuclei to be explained. Terminal deletions were most frequently caused by MH and MNU. The analysis of the frequency of micronuclei with signals of the investigated DNA probes showed differences between the frequency of MH- and MNU-induced micronuclei with specific signals. The micronuclei with 2 signals, telomeric DNA and rDNA (5S and/or 25S rDNA), were the most frequently observed in the case of both mutagens, but with a higher frequency after treatment with MH (46%) than MNU (37%). Also, 10% of MH-induced micronuclei were characterized by the presence of only telomere DNA sequences, whereas there were almost 3-fold more in the case of MNU-induced micronuclei (28%). Additionally, by using FISH with the same probes, an attempt was made to identify the origin of chromosome fragments in mitotic anaphase.  相似文献   

18.
Fluorescence in situ hybridization using simultaneously a combination of DNA probes for the telomeric hexamer repeat (TTAGGG) and the centromerically repeated murine gamma-satellite DNA was applied to analyze the nature of radiation-induced micronuclei in mouse NIH 3T3 fibroblasts. After subtraction of spontaneously occurring micronuclei independent from the dose and time after irradiation, approximately 22% of the radiation-induced micronuclei did not reveal any hybridization signal. Approximately 17% showed one centromeric hybridization signal and about four telomeric signals, suggesting their origin from whole chromosomes. Almost 60% of radiation-induced micronuclei had telomeric signals only, suggesting their origin from acentric fragments. A fraction of micronuclei were found to contain two or more acentric fragments. Micronuclei derived from whole chromosomes or from multiple acentric fragments might, together with DNA synthesis in micronuclei, explain the occurrence of radiation-induced micronuclei with DNA contents greater than the largest chromosome arm.  相似文献   

19.
Micronuclei are small interphase nuclei containing part of the genome; the DNA content of the smallest micronuclei is equivalent to one chromosome. For analysis by biochemical method and by cytofluorometry of interphase micronuclei containing a single chromosome, several isolation and purification procedures were tested and checked by fluorescent microscopy using the DNA dye Hoechst 33 342 and electron microscopy. Micronucleation of rat kangaroo epithelial cells was induced by colchicine treatment for three days. Micronuclei were isolated in a low ionic strength buffer containing collagenase, with concomitant mechanical shocks. Eighty % of the micronuclei were released after 3 to 7 min, with minimum nuclear breakage. Subsequent filtration through several polycarbonate filters 12, 8 and 5 micron in diameter enabled purification of the smallest micronuclei without aggregates or debris. Micronuclear morphology was well preserved, as shown by electron microscope observations. Therefore, we established the optimal conditions allowing gentle mass isolation of individual micronuclei of cultured PtK1 cells, compatible with flow cytometry analysis.  相似文献   

20.
The plant flavonol fisetin is a common dietary component that has a variety of established biological effects, one of which is the inhibition of the enzyme DNA topoisomerase II (topo II). Compounds that inhibit topo II can exert genotoxic effects such as DNA double strand breaks, which can lead to the induction of kinetochore- or CREST-negative micronuclei. Despite reports that fisetin is an effective topoisomerase II inhibitor, its genotoxic effects have not yet been well characterized. Genotoxicity testing of fisetin was conducted in TK6 and HL60 cell lines and the cells were analyzed for malsegregating chromosomes as well as for the induction of micronuclei. Using the cytokinesis-blocked CREST micronucleus assay to discriminate between micronuclei formed from chromosomal breakage (CREST-negative) and chromosomal loss (CREST-positive), a statistically significant increase in CREST-positive micronuclei was seen for all doses tested in both cell lines. CREST-negative micronuclei, however, were significantly increased at the higher test concentrations in the TK6 cell line. These data indicate that at low concentrations fisetin is primarily exerting its genotoxic effects through chromosomal loss and that the induction of DNA breaks is a secondary effect occurring at higher doses. To confirm these results, the ability of fisetin to inhibit human topoisomerase II-alpha was verified in an isolated enzyme system as was its ability to interfere with chromosome segregation during the anaphase and telophase periods of the cell cycle. Fisetin was confirmed to be an effective topo II inhibitor. In addition, significant increases in the number of mis-segregating chromosomes were observed in fisetin-treated cells from both cell lines. We conclude that fisetin is an aneugen at low concentrations capable of interfering with proper chromosomal segregation and that it is also an effective topo II inhibitor, which exerts clastogenic effects at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号