首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Northern forests are exposed to relatively high ammonia inputs due to high atmospheric deposition and the common practise of forest fertilization. It is not known how increased soil NH4 +concentrations affect acquisition of symbiosis-mediated N from organic sources. We examined the effect of inorganic N and P availability on N acquisition from alanine by 43 weeks old birch (Betula pendula) seedlings in symbiosis with the ectomycorrhizal fungus Paxillus involutus. The seedlings were exposed for 9 weeks to nutrient additions equivalent to 43 kg N and 6.4 kg P ha-1 (low N and P availability), 250 kg N and 38 kg P ha-1(high N and P availability) or to 250 kg N and 6.4 kg P ha-1 (high N and low P availability). Carbon and nitrogen allocation between the symbionts was assessed by exposing the foliage to 14CO2 and the mycelium to 15N-alanine or 15NH4 + simultaneously and measuring the distribution of the isotopic tracers after a three-day chase period. High inorganic N combined with low P availability did not have marked effect on symbiosis-mediated N uptake from alanine, whilst high N and P availability reduced alanine-derived 15N translocation by the fungus to the plant. Shoot 15N concentration and concentration of 14C in the extramatrical mycelium correlated significantly across treatments pointing to controlled reciprocity of transactions between the partners.  相似文献   

2.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

3.
The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.  相似文献   

4.
Over a period of nine years, 922 kg ha-1 of N was added in eight applications to a 16 year old P. radiata stand in a low rainfall area in north-east Tasmania, Australia. Fertilizing lifted current annual increment from 8.5 m3ha-1 for the unfertilized plots, to 31 m3ha-1. Increased growth was associated with improved health of the trees. Biomass measurements showed that there was a large increase in needle retention as well as needle mass on the fertilized trees. Concentration of N was also higher in fertilized trees. Fertilized plots contained 467 kg ha-1 more N than unfertilized plots. This represented about 50 percent of the N applied. Most of this extra N was in the forest crop and in the surface 10 cm of the soil. There was no increase in organic carbon in the surface soil with the result that the C/N ratio was reduced from a very high 28 to 17.Despite the high growth rates attained in the N fertilized plots, the failure to increase soil organic matter and the loss from the site of much of the applied N indicated that long term improvement of growth of these low rainfall sites was unlikely. Growth would only be maintained with continued N fertilizer additions.  相似文献   

5.
Prunings of Calliandra calothyrsus, Grevillea robusta, Leucaena diversifolia and farm yard manure were applied each cropping season at 3 and 6 t dry matter ha−1 to an Oxisol in Burundi. The field plots also received basal applications of nitrogen (N), phosphorus (P) and potassium (K). Application of the tree prunings or farm yard manure decreased the concentration of monomeric inorganic aluminium (Al) in soil solution from 2.92 mg Al dm−3 in the control plots to 0.75 mg Al dm−3 in the plots receiving 6 t ha−1 Calliandra prunings. The other organic materials also decreased the concentration of monomeric inorganic aluminium in the soil solution. The lowered Al concentration led to a corresponding decrease in the percentage Al saturation of the 0–10 cm soil layer from 80% to 68%. Grain yields of maize and beans were strongly inversely related to the percentage Al saturation of the soil. This confirms that soil acidity was the main constraint to maize and beans production. The yield improvement was mainly attributed to the ameliorating effects of the organic matter application on Al toxicity. The nutrient content had less effect presumably because of fertilizer use. In the best treatments, the yield of maize increased from 0.9 to 2.2 t ha−1 and the corresponding beans yield increased from 0.2 to 1.2 t ha−1. A C Borstlap Section editor  相似文献   

6.
Minocha  Rakesh  Long  Stephanie  Magill  Alison H.  Aber  John  McDowell  William H. 《Plant and Soil》2000,222(1-2):119-137
Polyamines (putrescine, spermidine, and spermine) are low molecular weight, open-chained, organic polycations which are found in all organisms and have been linked with stress responses in plants. The objectives of our study were to investigate the effects of chronic N additions to pine and hardwood stands at Harvard Forest, Petersham, MA on foliar polyamine and inorganic ion contents as well as soil and soil solution chemistry. Four treatment plots were established within each stand in 1988: control, low N (50 kg N ha-1 yr-1 as NH4NO3), low N + sulfur (74 kg S ha-1 yr-1 as Na2SO4), and high N (150 kg N ha-1 yr-1 as NH4NO3). All samples were analyzed for inorganic elements; foliage samples were also analyzed for polyamines and total N. In the pine stand putrescine and total N levels in the foliage were significantly higher for all N treatments as compared to the control plot. Total N content was positively correlated with polyamines in the needles (P 0.05). Both putrescine and N contents were also negatively correlated with most exchangeable cations and total elements in organic soil horizons and positively correlated with Ca and Mg in the soil solution (P 0.05). In the hardwood stand, putrescine and total N levels in the foliage were significantly higher for the high N treatment only as compared to the control plot. Here also, total foliar N content was positively correlated with polyamines (P 0.05). Unlike the case with the pine stand, in the hardwood stand foliar polyamines and N were significantly and negatively correlated with foliar total Ca, Mg, and Mn (P 0.05). Additional significant (P 0.05) relationships in hardwoods included: negative correlations between foliar polyamines and N content to exchangeable K and P and total P in the organic soil horizon; and positive correlations between foliar polyamines and N content to Mg in soil solution. With few exceptions, low N + S treatment had effects similar to the ones observed with low N alone for both stands. The changes observed in the pine stand for polyamine metabolism, N uptake, and element leaching from the soil into the soil solution in all treatment plots provide additional evidence that the pine stand is more nitrogen saturated than the hardwood stand. These results also indicate that the long-term addition of N to these stands has species specific and/or site specific effects that may in part be explained by the different land use histories of the two stands.  相似文献   

7.
A computer simulation model of the turnover of organic matter in soil was adapted to simulate the change in soil organic C and N contents of soil during several years following annual additions of farm slurry to maize fields. The model proved successful in estimating the build-up of both C and N in soil and the leaching of N to ground-water in response to applications of slurry ranging from 50 to 300 tons per hectare per year. The model was then used to estimate the build-up of organic matter in soil under crops of fodder maize that were grown using the excess of manure produced during the last 20 years in the Netherlands. The build-up of organic matter from these applications was estimated to lead to about 70 kg extra nitrogen mineralized ha-1 yr-1. As a result of legislation manure applications have decreased and are expected to decrease further in the immediate future. Calculations suggest that after 10 years of manure applied at rates no longer exceeding the amount needed to replace the phosphorus removed by crops, the extra mineralization of N will still be between 45 and 60 kg ha-1 yr-1. If manure applications cease altogether then the extra mineralization will be about 25–30 kg N ha-1 yr-1.  相似文献   

8.
Keith  H.  Raison  R.J.  Jacobsen  K.L. 《Plant and Soil》1997,196(1):81-99
Pools and annual fluxes of carbon (C) were estimated for a mature Eucalyptus pauciflora (snowgum) forest with and without phosphorus (P) fertilizer addition to determine the effect of soil P availability on allocation of C in the stand. Aboveground biomass was estimated from allometric equations relating stem and branch diameters of individual trees to their biomass. Biomass production was calculated from annual increments in tree diameters and measurements of litterfall. Maintenance and construction respiration were calculated for each component using equations given by Ryan (1991a). Total belowground C flux was estimated from measurements of annual soil CO2 efflux less the C content of annual litterfall (assuming forest floor and soil C were at approximate steady state for the year that soil CO2 efflux was measured). The total C content of the standing biomass of the unfertilized stand was 138 t ha-1, with approximately 80% aboveground and 20% belowground. Forest floor C was 8.5 t ha-1. Soil C content (0–1 m) was 369 t ha-1 representing 70% of the total C pool in the ecosystem. Total gross annual C flux aboveground (biomass increment plus litterfall plus respiration) was 11.9 t ha-1 and gross flux belowground (coarse root increment plus fine root production plus root respiration) was 5.1 t ha-1. Total annual soil efflux was 7.1 t ha-1, of which 2.5 t ha-1 (35%) was contributed by litter decomposition.The short-term effect of changing the availability of P compared with C on allocation to aboveground versus belowground processes was estimated by comparing fertilized and unfertilized stands during the year after treatment. In the P-fertilized stand annual wood biomass increment increased by 30%, there was no evidence of change in canopy biomass, and belowground C allocation decreased by 19% relative to the unfertilized stand. Total annual C flux was 16.97 and 16.75 t ha-1 yr-1 and the ratio of below- to aboveground C allocation was 0.43 and 0.35 in the unfertilized and P-fertilized stands, respectively. Therefore, the major response of the forest stand to increased soil P availability appeared to be a shift in C allocation; with little change in total productivity. These results emphasise that both growth rate and allocation need to be estimated to predict changes in fluxes and storage of C in forests that may occur in response to disturbance or climate change.  相似文献   

9.
Tropical montane forests are commonly limited by N or co-limited by N and P. Projected increases in N deposition in tropical montane regions are thought to be insufficient for vegetation demand and are not therefore expected to affect soil N availability and N2O emissions. We established a factorial N- and P-addition experiment (i.e., N, P, N + P, and control) across an elevation gradient of montane forests in Ecuador to test these hypotheses: (1) moderate rates of N and P additions are able to stimulate soil-N cycling rates and N2O fluxes, and (2) the magnitude and timing of soil N2O-flux responses depend on the initial nutrient status of the forest soils. Moderate rates of nutrients were added: 50 kg N ha?1 year?1 (in the form of urea) and 10 kg P ha?1 year?1 (in the form of NaH2PO 4 . 2H2O) split in two equal applications. We tested the hypotheses by measuring changes in net rates of soil–N cycling and N2O fluxes during the first 2 years (2008–2009) of nutrient manipulation in an old-growth premontane forest at 1,000 m, growing on a Cambisol soil with no organic layer, in an old-growth lower montane forest at 2,000 m, growing on a Cambisol soil with an organic layer, and an old-growth upper montane rainforest at 3,000 m, growing on a Histosol soil with a thick organic layer. Among the control plots, net nitrification rates were largest at the 1,000-m site whereas net nitrification was not detectable at the 2,000- and 3,000-m sites. The already large net nitrification at the 1,000-m site was not affected by nutrient additions, but net nitrification became detectable at the 2,000- and 3000-m sites after the second year of N and N + P additions. N2O emissions increased rapidly following N and N + P additions at the 1,000-m site whereas only smaller increases occurred at the 2,000- and 3,000-m sites during the second year of N and N + P additions. Addition of P alone had no effect on net rates of soil N cycling and N2O fluxes at any elevation. Our results showed that the initial soil N status, which may also be influenced by presence or absence of organic layer, soil moisture and temperature as encompassed by the elevation gradient, is a good indicator of how soil N cycling and N2O fluxes may respond to future increases in nutrient additions.  相似文献   

10.
Wen  Guang  Bates  T. E.  Voroney  R. P.  Yamamoto  T.  Chikushi  J.  Curtin  D. 《Plant and Soil》2002,246(2):231-240
The threat of spreading diseases is a serious concern when organic wastes are applied to farmland. Irradiation and composting are effective methods to reduce pathogens. Field experiments were conducted to assess the influence of these pathogen-eliminating methods on plant availability of Zn in the wastes. Four organic wastes: digested and dewatered (DSS), irradiated (DISS), composted (DICSS) sewage sludge and composted livestock manure (CLM) were applied during two growing seasons at 10, 20, 30, and 40 t solids ha–1 year–1. Available N and K in the wastes were estimated and N and K fertilizers were added to the soil to equalize available N and K supply among treatments to avoid dilution of crop Zn concentration. A control treatment (CT) received fertilizers but no waste. Lettuce, snap beans and petunias were grown in 1990, and two cuts of lettuce were harvested in 1991. The influence of waste Zn application on crop Zn concentration was studied within approximately equal crop yields. Crop Zn concentration increased in all crops treated with DSS or DISS, and often reached a maximum at the 30 t ha–1 rate of application, then slightly decreased at 40 t ha–1. The response of crop Zn concentration to the amount of Zn applied in the wastes was best described by quadratic equations. Waste application also significantly increased soil Zn availability index, which was a function of DTPA (diethylenetriamine pentaacetic acid)-extractable soil Zn and soil pH. The index was highly correlated with crop Zn concentration. Although Zn concentration in DICSS was similar to those in DSS and DISS, Zn applied in DICSS did not increase crop Zn concentration or soil availability index. Composting reduced the availability of Zn. The similar concentrations of Zn in DSS and DISS in both years allowed the use of a paired t-test to determine the differences in crop Zn concentration caused by application of DSS and DISS. Zinc applied in DISS produced a higher Zn concentration in bean pods than Zn applied in DSS (t > T 0.05 at P < 0.02, df = 15), indicating that irradiation increased phytoavailability of Zn in the sludge. However, no similar effect was found in Zn concentrations in the two cuts of lettuce in 1991 or in soil Zn availability index.  相似文献   

11.
Soil degradation in the savannah-derived agroecosystems of West Africa is often associated with rapid depletion of organic carbon stocks in soils of coarse texture. Field experiments were conducted over a period of more than 30 years at two sites in semiarid Togo to test the impact of agricultural management practices on soil C stocks and crop productivity. The resulting datasets were analysed using dynamic simulation models of varying complexity, to study the impact of crop rotation, fertiliser use and crop residue management on soil C dynamics. The models were then used to calculate the size of the annual C inputs necessary to restore C stocks to thresholds that would allow positive crop responses to fertilisers under continuous cultivation. Yields of all crops declined over the 30 years irrespective of crop rotation, fertiliser use or crop residue management. Both seed-cotton and cereal grain yields with fertiliser fluctuated around 1 t ha?1 after 20 years. Rotations that included early maturing sorghum varieties provided larger C inputs to the soil through residue biomass; around 2.5 t C ha?1?year?1. Soil C stocks, originally of 15 t ha?1 after woodland clearance, decreased by around 3 t ha?1 at both sites and for virtually all treatments, reaching lower equilibrium levels after 5–10 years of cultivation. Soil C dynamics were well described with a two-pool SOM model running on an annual time step, with parameter values of 0.25 for the fraction of resistant plant material (K1), 0.15–0.20 for the decomposition rate of labile soil C (K2) and 8–10 t C ha?1 for the fraction of stable C in the soil. Simulated addition of organic matter to the soil 30 years after woodland clearance indicated that additions of 3 t C ha?1?year?1 for 15–20 years would be necessary to build ‘threshold’ soil C stocks of around 13 t ha?1, compatible with positive crop response to fertiliser. The simulated soil C increases of 0.5 to 1.6% per year are comparable with results from long-term experiments in the region. However, the amounts of organic matter necessary to build these soil C stocks are not readily available to resource-poor farmers. These experimental results question the assumption that crop residue removal and lack of fertiliser input are responsible for soil C decline in these soils. Even when residues were incorporated and fertilisers used at high rates, crop C inputs were insufficient to compensate for C losses from these sandy soils under continuous cultivation.  相似文献   

12.
Response of plant biodiversity to increased availability of nitrogen (N) has been investigated in temperate and boreal forests, which are typically N‐limited, but little is known in tropical forests. We examined the effects of artificial N additions on plant diversity (species richness, density and cover) of the understory layer in an N saturated old‐growth tropical forest in southern China to test the following hypothesis: N additions decrease plant diversity in N saturated tropical forests primarily from N‐mediated changes in soil properties. Experimental additions of N were administered at the following levels from July 2003 to July 2008: no addition (Control); 50 kg N ha?1 yr?1 (Low‐N); 100 kg N ha?1 yr?1 (Medium‐N), and 150 kg N ha?1 yr?1 (High‐N). Results showed that no understory species exhibited positive growth response to any level of N addition during the study period. Although low‐to‐medium levels of N addition (≤100 kg N ha?1 yr?1) generally did not alter plant diversity through time, high levels of N addition significantly reduced species diversity. This decrease was most closely related to declines within tree seedling and fern functional groups, as well as to significant increases in soil acidity and Al mobility, and decreases in Ca availability and fine‐root biomass. This mechanism for loss of biodiversity provides sharp contrast to competition‐based mechanisms suggested in studies of understory communities in other forests. Our results suggest that high‐N additions can decrease plant diversity in tropical forests, but that this response may vary with rate of N addition.  相似文献   

13.
Sitka spruce planted on nutrient-poor soils in mixture with pine or larch, unlike pure spruce, does not become N deficient and does not require N fertilizer. To test the hypothesis that N availability in the soil is enhanced beneath mixed species, the seasonal changes in different N forms were compared in humus (L+F+H) and soil beneath 15-year-old Sitka spruce (SS) and mixed Sitka spruce-Scots pine (SS and SP) planted on a gleyed heathland soil. Amounts of mineral and organic N extracted from humus in spring were significantly (p < 0.05) higher in SS and SP than in SS. Larger amounts were measured in the underlying soil, which favoured the deeper-rooting spruce and pine in SS and SP plots. Annual net N mineralization, measured by in-situ incubation, was 32 and 47 kg N ha-1 in the surface 10 cm beneath SS and (SS and SP), respectively. In spring, readily mineralized organic N (waterlogged incubation at 30°C) was higher in humus and soil from (SS and SP) than from SS by 15 kg N ha-1. The larger N pools beneath (SS and SP) were consistent with the higher total N content of the humus beneath (SS and SP), 446 compared with 255 kg N ha-1 beneath SS. This indicated that beneath (SS and SP) N had been transferred from the underlying soil.  相似文献   

14.
The biogeochemical cycling of sulfur (S) was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a hydrochemical and multi-isotope approach. The snowpack and 10 streams of varying size and land use were sampled for analysis of anions, dissolved organic carbon (DOC), 35S activity, and δ34S and δ18O values of sulfate. At one of the streams, δ18O values of water also were measured. Apportionment of sulfur derived from atmospheric and mineral sources based on their distinct δ34S values was possible for 7 of the 10 streams. Although mineral S generally dominated, atmospheric-derived S contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. However, most of this atmospheric sulfur was not from the melting snowpack; the direct contribution of atmospheric sulfate to streamwater sulfate was constrained by 35S mass balance to a maximum of 7%. Rather, the main source of atmospheric sulfur in streamwater was atmospheric sulfate deposited months to years earlier that had microbially cycled through the soil organic sulfur pool. This atmospheric/pedospheric sulfate (pedogenic sulfate formed from atmospheric sulfate) source is revealed by δ18O values of streamwater sulfate that remained constant and significantly lower than those of atmospheric sulfate throughout the melt period, as well as streamwater 35S ages of hundreds of days. Our results indicate that the response of streamwater sulfate to changes in atmospheric deposition will be mediated by sulfate retention in the soil.  相似文献   

15.
Abstract. Lantana camara shrubland is compared with the adjacent Quercus leucotrichophora and Pinus roxburghii forests to understand changes occurring in net primary productivity and nutrient cycling, as a consequence of degradation of these forests. The total net primary productivity of Lantana camara shrubland was 17 t ha-1 yr-1, which is similar to the values reported for forests: 16 - 21 t ha-1 yr-1. Total nutrient content (N, P) in the soil in the L. camara shrubland: 2932 kg ha-1 N and 111 kg ha-1 P, was lower than that of the forest soils.  相似文献   

16.
Changes in the carbon stocks of stem biomass, organic layers and the upper 50 cm of the mineral soil during succession and afforestation of spruce (Picea abies) on former grassland were examined along six chronosequences in Thuringia and the Alps. Three chronosequences were established on calcareous and three on acidic bedrocks. Stand elevation and mean annual precipitation of the chronosequences were different. Maximum stand age was 93 years on acid and 112 years on calcareous bedrocks. Stem biomass increased with stand age and reached values of 250–400 t C ha?1 in the oldest successional stands. On acidic bedrocks, the organic layers accumulated linearly during forest succession at a rate of 0.34 t C ha?1 yr?1. On calcareous bedrocks, a maximum carbon stock in the humus layers was reached at an age of 60 years. Total carbon stocks in stem biomass, organic layers and the mineral soil increased during forest development from 75 t C ha?1 in the meadows to 350 t C ha?1 in the oldest successional forest stands (2.75 t C ha?1 yr?1). Carbon sequestration occurred in stem biomass and in the organic layers (0.34 t C ha?1 yr?1on acid bedrock), while mineral soil carbon stocks declined. Mineral soil carbon stocks were larger in areas with higher precipitation. During forest succession, mineral soil carbon stocks of the upper 50 cm decreased until they reached approximately 80% of the meadow level and increased slightly thereafter. Carbon dynamics in soil layers were examined by a process model. Results showed that sustained input of meadow fine roots is the factor, which most likely reduces carbon losses in the upper 10 cm. Carbon losses in 10–20 cm depth were lower on acidic than on calcareous bedrocks. In this depth, continuous dissolved organic carbon inputs and low soil respiration rates could promote carbon sequestration following initial carbon loss. At least 80 years are necessary to regain former stock levels in the mineral soil. Despite the comparatively larger amount of carbon stored in the regrowing vegetation, afforestation projects under the Kyoto protocol should also aim at the preservation or increase of carbon in the mineral soil regarding its greater stability of compared with stocks in biomass and humus layers. If grassland afforestation is planned, suitable management options and a sufficient rotation length should be chosen to achieve these objectives. Maintenance of grass cover reduces the initial loss.  相似文献   

17.
Forage barley dry matter yield and quality, as well as soil pH, Al, and Mn were monitored in response to P, K, and lime application on a newly cleared Typic Cryorthod (Orthid Podzol). The overall yearly yield level was affected by precipitation. Without liming soil acidification occurred after three years of production. The liming rate of 2.2 Mg.ha−1 was found optimal for maintaining initial pH levels (5.66) and increasing forage barley yields. It was also found optimum for K and P utilization for these first years of production. Soil pH dropped an average of 0.33 units over the three years on unlimed P plots and 0.46 units over 4 years on K plots. Phosphorus and K fertilization increased N utilization and resulted in decreased soil acidification. Phosphorus availability was greater in the first year of cropping than in subsequent years, this was likely due to the effects of higher available moisture, liming release of native P, and effects of initial fertilization. There was a 148% increase in total dry matter yield and an 85% increase in protein yield of forage barley with P application. Liming increased total forage barley yields an average of 69% and total protein yields 48%. Reduced barley yields in unlimed plots were due to low soil pH. After two years of cultivation, unlimed plots contained exchangeable Al and soluble Mn levels reported toxic for other soils. The higher liming rates of 4.4 and 6.6 Mg.ha−1 reduced soluble Mn to near critically low levels. soil Al and Mn were highly correlated to pH. Soil exchangeable Al, Mn, and soluble Mn along with tissue Al were inversely correlated to percentage yield. The average yield respone to three levels of applied K, increased from zero initially to 67% by the fourth year. Total dry-matter production increased 32% and total protein yield increased an average of 32% and total protein yield increased an average of 15% with K fertilization over four years. About 60% of the yield response occurred between the 0 and 22kg K.ha−1 rates. Initial soil exchangeable K levels were not maintained even at the highest 66kg K.ha−1 treatment. Soil exchangeable Al and soluble Mn were elevated with dropping pH. Soil K reserves and resupply of exchangeable K in these soils over the long term will be an important factor in crop production.  相似文献   

18.
The effect of organic and inorganic sources of phosphorus (P) on soil P fractions and P adsorption was studied in a field without plant growth on a Kandiudalf in western Kenya. A high-quality organic source, Tithonia diversifolia (Hemsley) A. Gray leaves, and a low-quality source, maize (Zea mays L.) stover, were applied alone or in combination with triple superphosphate (TSP). The P rate was kept constant at 15 kg P ha-1. Soil extractable P (resin, bicarbonate and sodium hydroxide), microbial biomass P and C and P adsorption isotherms were determined during 16 weeks after application of treatments. Application of tithonia either alone or with TSP increased resin P, bicarbonate P, microbial P, and sodium hydroxide inorganic P. Tithonia alone reduced P adsorption at 2–16 weeks. Maize stover had no effect on any of the P fractions or P adsorption. At 8 weeks, the application of tithonia reduced microbial C-to-P ratio (20) as compared to maize stover, TSP and the control (31–34). The reduction in P adsorption by tithonia was accompanied by increases in all measured P fractions, the sum of P in those fractions (resin, bicarbonate and sodium hydroxide) being larger than the P added. The reduction in P adsorption apparently resulted from competition for adsorption sites, probably by organic anions produced during decomposition of the high quality tithonia. Integration of inorganic P (TSP) with organic materials had little added benefit compared to sole application of TSP, except that combination of tithonia with TSP increased microbial biomass. The results indicate that a high quality organic input can be comparable to or more effective than inorganic P in increasing P availability in the soil.  相似文献   

19.
Application of lime (4000 kg ha-1) to a soil used for commercial carrot production (pH 6.9) significantly (p<0.05) reduced the incidence of cavity spot disease of carrots compared to unlimed soil (pH 5.1). It significantly (p<0.01) increased soil microbial activity as measured by the hydrolysis of fluorescein diacetate and arginine ammonification. The application of lime resulted in a significant (p<0.01) increase in the total numbers of colony forming units (efu) of aerobic bacteria, fluorescent pseudomonads, Gram negative bacteria, actinomycetes and a significant (p<0.01) decrease in the cfu of filamentous fungi and yeasts compared to unlimed soil. Liming also increased the cfu of non-streptomycete actinomycetes rarely reported in similar studies. These non-streptomycete actinomycetes were estimated and isolated using polyvalent Streptomyces phages and the dry heat technique to reduce the dominance of streptomycetes on isolation plates. The non-streptomycete actinomycetes isolated included species of Actinoplanes, Micromonospora, Streptoverticillium, Nocardia, Rhodococcus, Microbispora, Actinomadura, Dactylosporangium and Streptosporangium. The numbers of actinomycetes antagonistic to Pythium coloratum, a causal agent of cavity spot disease of carrots increased in soil amended with lime. Application of lime also reduced the isolation frequency of P. coloratum from asymptomatic carrot roots grown in soil artificially infested with the pathogen, 3, 4 and 5 weeks after sowing.  相似文献   

20.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号