首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A butyrylesterase from human red cells was prepared to homogeneity using DEAE-cellulose, Ultrogel ACA-34, DEAE-Sephacel, and precipitation with 1.5 M (NH4)2SO4. The yield was 25-35% relative to the enzyme activity of the hemolysate. Because of its preference for butyric acid esters the enzyme was designated a butyrylesterase. With alpha-naphthyl butyrate the Km was 7.6 microM and the kcat, 48 s-1. The molecular weight was 340,000 and the subunit weight 85,000, indicating a tetrameric structure. The isoelectric pH was 4.0. The enzyme preparation did not contain cystine. Sialic acid or other carbohydrate components could not be detected. The enzyme was irreversibly inhibited by organophosphate esters and the second-order rate constant was 192 M-1 s-1 for diethyl p-nitrophenyl phosphate. For the brain enzyme the constant was 206 M-1 s-1. The enzyme was irreversibly inhibited by sulfhydryl reagents, indicating that the enzyme is a sulfhydryl-dependent serine esterase. The enzyme was identical to the butyrylesterase from human brain, and the two enzymes were immunochemically identical. An amino acid ester has been shown to be split at a higher rate than butyric acid esters; however, the specificity constant (kcat/Km) was lower for the amino acid ester than for the butyric acid ester. The enzyme did not exhibit amidase activity.  相似文献   

2.
Juvenile hormone (JH) esterase found primarily in the hemolymph and tissues of insects is a low abundance protein involved in the ester hydrolysis of insect juvenile hormones, JHs. The enzyme was purified from the larval plasma of wild-type Manduca sexta using an affinity column prepared by binding the ligand, 3-[(4'-mercapto)butylthio]-1,1,1-trifluoropropan-2-one (MBTFP), to epoxy-activated Sepharose. The purification was greater than 700-fold with a 72% recovery, and the purified enzyme appeared as a single protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoelectrophoresis, reverse phase high performance liquid chromatography, and amino acid sequence analysis. The molecular weight was 66,000. The plasma JH esterase in wild-type, black, and white strains of M. sexta was similar when analyzed by immunotitration, wide range (pH 3.5-9.0) isoelectric focusing, and inhibition with MBTFP and 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP). Inhibition studies revealed a sensitive and insensitive form (I50 = 10(-9) and 10(-6) M, respectively) in these three biotypes. Narrow range isoelectric focusing (pH 4.0-7.0) indicated the presence of two major isoelectric forms with pI values of 6.0 and 5.5, but their inhibition kinetics with OTFP and O,O-diisopropyl phosphorofluoridate were identical.  相似文献   

3.
Human erythrocytes contain a butyrylesterase which, judging from the ease with which it can be solubilized, is present in the cytoplasm of these cells. This enzyme has been isolated and a number of its properties characterized. The purified enzyme hydrolyzed butyryl esters with both a lower Km and higher V than is seen with esters containing longer or shorter acyl groups. It has a molecular weight of 320 000 and an isoelectric point of 4.1. This low isoelectric point is apparently a result of the relatively high content of glutamic and aspartic acids. The stability of the isolated butyrylesterase has been examined under a number of different conditions. The enzyme is inhibited by low concentrations of Hg2+, Cd2+, Zn2+ and the organophosphorus compound Mipafox, but is insensitive to eserine. The properties of this butyrylesterase, including its ability to hydrolyze thiocholine esters at a relatively rapid rate (albeit with a high Km), are a mixture of those expected for an arylesterase and a cholinesterase.  相似文献   

4.
G Lin  C T Shieh  H C Ho  J Y Chouhwang  W Y Lin  C P Lu 《Biochemistry》1999,38(31):9971-9981
Alkyl-N-phenyl carbamates (2-8) (see Figure 1), alkyl-N-phenyl thiocarbamates (9-15), 2,2'-biphenyl-2-ol-2'-N-substituted carbamates (16-23), and 2, 2'-biphenyl-2-N-octadecylcarbamate-2'-N-substituted carbamates (24-31) are prepared and evaluated for their inhibition effects on porcine pancreatic cholesterol esterase and Pseudomona species lipase. All inhibitors are characterized as transient or pseudo substrate inhibitors for both enzymes. Both enzymes are not protected from inhibition and further inactivated by carbamates 2-8 and thiocarbamates 9-15 in the presence of trifluoroacetophenone. Therefore, carbamates 2-8 and thiocarbamates 9-15 are exceptions for active site binding inhibitors and are probably the second alkyl-chain binding-site-directed inhibitors for both enzymes. The inhibition data for carbamates 2-8 and thiocarbamates 9-15 are correlated with the steric constant, E(s), and the hydrophobicity constant, pi; however, the inhibition data are not correlated with the Taft substituent constant, sigma. A comparison of the inhibition data for carbamates 2-8 and thiocarbamates 9-15 toward both enzymes indicates that thiocarbamates 9-15 are more potent inhibitors than carbamates 2-8. A comparison of the inhibition data for cholesterol esterase and Pseudomona species lipase by carbamates 2-8 or thiocarbamates 9-15 indicates that cholesterol esterase is more sensitive to the E(s) and pi values than Pseudomona species lipase. The negative slope values for the logarithms of inhibition data for Pseudomona species lipase by carbamates 2-8 and thiocarbamates 9-15 versus E(s) and pi indicate that the second alkyl-chain-binding site of Pseudomona species lipase is huge, hydrophilic, compared to that of cholesterol esterase, and prefers to interact with a bulky, hydrophilic inhibitor rather than a small, hydrophobic one. On the contrary, the second alkyl-chain-binding site of cholesterol esterase prefers to bind to a small, hydrophobic inhibitor. Both enzymes are protected from inhibition by carbamates 16-23 in the presence of trifluoroacetophenone. Therefore, carbamates 16-23 are characterized as the alkyl chain binding site, esteratic site oxyanion active site directed pseudo substrate inhibitors for both enzymes. Both enzyme inhibition data for carbamates 16-22 are well-correlated with sigma alone. The negative rho values for these correlations indicate that the serine residue of both enzymes and carbamates 16-22 forms the tetrahedral species with more positive charges than inhibitors and the enzymes and follow the formation of the carbamyl enzymes with more positive charges than the tetrahedral species. Carbamates 24-31 are also exceptions for active site binding inhibitors and probably the second alkyl chain binding site-directed inhibitors for both enzymes. However, the enzyme inhibition constants for carbamates 24-31 are correlated with values of sigma, E(s), and pi. The negative rho values for these correlations indicate that both enzymes and carbamates 24-31 form the tetrahedral species with more positive charges than inhibitors and the enzymes and follow the formation of the carbamyl enzymes with more positive charges than those tetrahedral species. Therefore, carbamates 24-31 may bind to both the active sites and the second alkyl chain binding site and follow the evacuation of the active sites. A comparison of the rho values for cholesterol esterase and Pseudomona species lipase by carbamates 24-31 indicates that cholesterol esterase is much more sensitive to the sigma values than Pseudomona species lipase. The negative sensitivity values, delta, for the cholesterol esterase inhibitions by carbamates 24-31 indicate that the enzyme prefers to bind to a bulky carbamyl group rather than bind to a small one. The hydrophobicity of carbamates 24-31 does not play a major role in both enzyme inhibitions.  相似文献   

5.
An extracellular p-coumaroyl esterase produced by the anaerobic fungus Neocallimastix strain MC-2 released p-coumaroyl groups from 0-[5-0-((E)-p-coumaroyl)-alpha-L-arabinofuranosyl]-(1----3)-0-beta -D-xylopyranosyl-(1----4)-D-xylopyranose (PAXX). The esterase was purified 121-fold from culture medium in successive steps involving ultrafiltration column chromatography on S-sepharose and hydroxylapatite, isoelectric focusing, and gel filtration. The native enzyme had an apparent mass of 11 kDa under nondenaturing conditions and a mass of 5.8 kDa under denaturing conditions, suggesting that the enzyme may exist as a dimer. The isoelectric point was 4.7, and the pH optimum was 7.2. The purified esterase had 100 times more activity towards PAXX than towards the analogous feruloyl ester (FAXX). The apparent Km and Vmax of the purified p-coumaroyl esterase for PAXX at pH 7.2 and 40 degrees C were 19.4 microM and 5.1 microM min(-1), respectively. p-Coumaroyl tetrasaccharides isolated from plant cell walls were hydrolyzed at rates similar to that for PAXX, whereas a dimer of PAXX was hydrolyzed at a rate 20-fold lower, yielding 4,4'-dihydroxy-alpha-truxillic acid as an end product. Ethyl and methyl p-coumarates were hydrolyzed at very slow rates, if at all. The purified esterase released p-coumaroyl groups from finely, but not coarsely, ground plant cell walls, and this activity was enhanced by the addition of xylanase and other cell wall-degrading enzymes.  相似文献   

6.
Undecyl acetate esterase from Pseudomonas cepacia grown on 2-tridecanone was strongly inhibited by organophosphates and other esterase inhibitors. Also, p-chloromercuribenzoate at 1 x 10(-4) M showed a 70% inhibition of esterase activity. The enzyme hydrolyzed both aliphatic and aromatic acetate esters at substrate concentrations of 0.25 M. Under these conditions the highest reaction rate was toward undecyl acetate. No lipase or proteolytic activity was demonstrated. Undecyl acetate esterase was classified as a carboxylesterase (B-esterase). Cell-free activity studies on the production of undecyl acetate esterase grown on different carbon sources plus zymogram studies demonstrated that the enzyme was inducible when 2-tridecanone, 2-tridecanol, undecyl acetate and, to a lesser extent, 1-undecanol were growth substrates. Induction of undecyl acetate esterase during oxidation of 2-tridecanone supports the view that undecyl acetate is an intermediate in the degradation of the methyl ketone.  相似文献   

7.
The esterase, phosphatase, and sulfatase activities of carbonic anhydrase (CA, EC 4.2.1.1) isozymes, CA I, II, and XIII with 4-nitrophenyl esters as substrates was investigated. These enzymes show esterase activity with 4-nitrophenyl acetate as substrate, with second order rate constants in the range of 753-7706M(-1)s(-1), being less effective as phosphatases (k(cat)/K(M) in the range of 14.89-1374.40M(-1)s(-1)) and totally ineffective sulfatases. The esterase/phosphatase activities were inhibited by sulfonamide CA inhibitors, proving that the zinc-hydroxide mechanism responsible for the CO(2) hydrase activities of CAs is also responsible for their esterase/phosphatase activity. CA XIII was the most effective esterase and phosphatase. CA XIII might catalyze other physiological reactions than CO(2) hydration, based on its relevant phosphatase activity.  相似文献   

8.
Two species of beta-lactamase determined by plasmids in enteric bacteria that show some resemblance to TEM enzymes are described. Both are distinct from all other plasmid-mediated beta-lactamases and differ from the TEM beta-lactamases in ability to hydrolyze some substrates, in isoelectric point, in immunological specificity, and in susceptibility to inhibition. One of the enzyme species, mediated by plasmid p453, has been briefly described previously. We have discovered that this beta-lactamase, designated SHV-1, is unique in its response to inhibition by the sulfhydryl group reagent p-chloromercuribenzoate, because the hydrolysis of cephaloridine but not that of benzylpenicillin is affected. This enzyme is found in a variety of plasmid types which were transferred from several bacterial species collected from a wide geographic range. The other enzyme species is novel; only a single plasmid determining this kind of beta-lactamase (designated HMS-1) has been detected.  相似文献   

9.
Purification and partial amino acid sequences of an esterase from tomato   总被引:8,自引:0,他引:8  
Screening of 18 suspension plant cell cultures of taxonomically distant species revealed that a methyl jasmonate hydrolysing enzyme activity (0.21-5.67 pkat/mg) occurs in all species so far analysed. The methyl jasmonate hydrolysing esterase was purified from cell cultures of Lycopersicon esculentum using a five-step procedure including anion-exchange chromatography, gel-filtration and chromatography on hydroxylapatite. The esterase was purified 767-fold to give an almost homogenous protein in a yield of 2.2%. The native enzyme exhibited a M(r) of 26 kDa (gel-filtration chromatography), which was similar to the M(r) determined by SDS-PAGE and MALDI-TOF analysis (M(r) of 28547 kDa). Enzyme kinetics revealed a K(m) value of 15 microM and a V(max) value of 7.97 nkat/mg, an pH optimum of 9.0 and a temperature optimum of 40 degrees C. The enzyme also efficiently hydrolyzed methyl esters of abscisic acid, indole-3-acetic acid, and fatty acids. In contrast, methyl esters of salicylic acid, benzoic acid and cinnamic acid were only poor substrates for the enzyme. N-Methylmaleimide, iodacetamide, bestatin and pepstatin (inhibitors of thiol-, metal- and carboxyproteases, respectively) did not inactivate the enzyme while a serine protease inhibitor, phenylmethylsulfonyl fluoride, at a concentration of 5 mM led to irreversible and complete inhibition of enzyme activity. Proteolysis of the pure enzyme with endoproteinase LysC revealed three peptide fragments with 11-14 amino acids. N-Terminal sequencing yielded an additional peptide fragment with 10 amino acids. Sequence alignment of these fragments showed high homologies to certain plant esterases and hydroxynitrile lyases that belong to the alpha/beta hydrolase fold protein superfamily.  相似文献   

10.
Acid phosphatase, esterases, and glutamate, lactate and malate dehydrogenases of 34 strains of Enterobacter cloacae and 22 strains of Enterobacter sakazakii were analysed by horizontal polyacrylamide agarose gel electrophoresis and by isoelectrofocusing in thin-layer polyacrylamide gel. The two species could be separated on the basis of distinct electrophoretic patterns of all enzymes analysed. Glutamate dehydrogenase and acid phosphatase were detected exclusively in E. cloacae, whereas esterase bands were more intensively stained in E. sakazakii. For each species, two zymotypes could be distinguished, on the basis of electrophoretic mobilities of malate dehydrogenase and banding patterns of esterase for E. cloacae, and by both isoelectric point and electrophoretic mobilities of an esterase and of lactate and malate dehydrogenases for E. sakazakii. The high degree of enzyme polymorphism within the two species permitted precise identification of strains. The variations in electrophoretic patterns might therefore provide useful epidemiological markers.  相似文献   

11.
The effects of urea in concentrations from 0 to 6M on the following properties of yeast phosphoglycerate kinase were studied: the kinetics of inactivation of the enzyme, the spectrum of 2-chloromercuri-4-nitrophenol bound to the single thiol group of the enzyme, the rate of reaction between the mercurial and enzyme, and the isoelectric point. The enzyme was inactivated by as much as 30% in 1M-urea, and the other data were interpreted as a possible 'tightening' of enzyme structure. The catalytic behaviour of the enzyme in 2M-urea was time-dependent, the initial effects being similar to those in 1M-urea. Polyacrylamide-gel isoelectric focusing of the enzyme in the presence of 2M-urea showed a single species of enzyme with an isoelectric point intermediate between those in 1M- and 3M-urea; a species with an identical isoelectric point was obtained after an 11-day exposure at 4 degrees C to the denaturant at 2M. The enzyme was rapidly inactivated in 3M-urea, with the thiol group fully exposed and the isoelectric point 0.9pH unit higher than in the absence of urea. No further conformational changes could be demonstrated with urea concentrations of 4M or greater. It is suggested that the equilibrium species that exists in 2M-urea has one of two buried lysine residues exposed. The second lysine residue is exposed in 3M or greater concentrations of the denaturant.  相似文献   

12.
The discovery of a potentially novel proline-specific peptidase from bovine serum is presented which is capable of cleaving the dipeptidyl peptidase IV (DPIV) substrate Gly-Pro-MCA. The enzyme was isolated and purified with the use of Phenyl Sepharose Hydrophobic Interaction, Sephacryl S-300 Gel Filtration, and Q-Sephacryl Anion Exchange, producing an overall purification factor of 257. SDS PAGE resulted in a monomeric molecular mass of 158kDa while size exclusion chromatography generated a native molecular mass of 328kDa. The enzyme remained active over a broad pH range with a distinct preference for a neutral pH range of 7-8.5. Chromatofocusing and isoelectric focusing (IEF) revealed the enzyme's isoelectric point to be 4.74. DPIV-like activity was not inhibited by serine protease inhibitors but was by the metallo-protease inhibitors, the phenanthrolines. The enzyme was also partially inhibited by bestatin. Substrate specificity studies proved that the enzyme is capable of sequential cleavage of bovine beta-Casomorphin and Substance P. The peptidase cleaved the standard DPIV substrate, Gly-Pro-MCA with a K(M) of 38.4 microM, while Lys-Pro-MCA was hydrolysed with a K(M) of 103 microM. The DPIV-like activity was specifically inhibited by both Diprotin A and B, non-competitively, generating a K(i) of 1.4 x 10(-4) M for both inhibitors. Ile-Thiazolidide and Ile-Pyrrolidide both inhibited competitively with an inhibition constant of 3.7 x 10(-7) and 7.5 x 10(-7) M, respectively. It is concluded that bovine serum DPIV-like activity share many biochemical properties with DPIV and DPIV-like enzymes but not exclusively, suggesting that the purified peptidase may play an important novel role in bioactive oligopeptide degradation.  相似文献   

13.
The mechanism of enzymatic inactivation of purified and membrane-bound acetylcholine esterase by ascorbate and copper was investigated. While the exposure of the enzyme to either ascorbate or copper did not cause enzymatic inactivation, the incubation of the enzyme with a combination of both ascorbate and copper resulted in a loss in acetylcholine esterase activity, which was time dependent. The enzymatic inactivation required either molecular oxygen or hydrogen peroxide under anaerobic conditions. Scavengers of hydroxyl radicals at concentrations of up to 100 mM did not provide protection to acetylcholine esterase. Only mannitol at very high concentrations (above 1 M) efficiently prevented the inactivation of the enzyme. The kinetics of the aerobic oxidation of reduced ascorbate in the presence of acetylcholine esterase and copper closely followed the rate of enzyme inactivation. Addition of the chelating agents EDTA and diethylenetriaminepentaacetic acid prevented both the oxidation of ascorbate and the inactivation of the enzyme. In the presence of low concentrations of histidine (0.5-2.0 mM), which forms high affinity complexes with copper, the rate of ascorbate oxidation was similar to that recorded in its absence. On the other hand, no enzyme inactivation was indicated in the presence of histidine. Low temperature EPR measurements have demonstrated the binding of copper to the enzyme, and have shown the reduction of the cupric enzyme to the corresponding cuprous complex. In view of these results, a general "site-specific" mechanism for biological damage can be offered, in which copper(II) ions are bound to enzymes or other biological macromolecules. Ascorbate plays a dual role: it reduces the cupric complex to the corresponding cuprous state and serves as a source for H2O2, which, in turn, reacts with the reduced copper complex, in a Fenton reaction. In this reaction, secondary hydroxyl radicals are site specifically formed, and react preferentially with the protein, at the site of their formation, causing its inactivation. This mechanism is analogous to that previously proposed (Samuni, A., Chevion, M., and Czapski, G. (1981) J. Biol. Chem. 256, 12632-12635) for the enhancement of the biological damage caused by superoxide in the presence of copper.  相似文献   

14.
We have purified a bacterial enzyme, designated esterase M, by tailoring an efficient and rapid strategy with information derived from titration curves of proteins in crude extract. The pH-dependent stability of the enzyme activity observed by titration pattern allowed an acidic pH treatment of extract and a cationic exchange chromatography at pH 4.1. These two steps were followed by an anionic exchange chromatography and a preparative electrophoresis. Thus, the enzyme was purified about 2000-fold within two days with a recovery of 13.3%. The electrophoretic variants of esterase M were investigated for their molecular relationship through the specific effect of antibodies on esterase electrophoretic pattern (immunosubtractive electrophoresis) which is applicable to large series of samples. By this process, we have demonstrated the presence of common antigenic determinants among the electromorphs of esterase M produced by the three species of motile Aeromonas.  相似文献   

15.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

16.
The cellulolytic system of the thermophilic fungus Sporotrichum thermophile contains a recently discovered esterase that may hydrolyze the ester linkage between the 4- O -methyl- d -glucuronic acid of glucuronoxylan and lignin alcohols. The glucuronoyl esterase named St GE1 was purified to homogeneity with a molecular mass of M r 58 kDa and pI 6.7. The enzyme activity was optimal at pH 6.0 and 60 °C. The esterase displayed a narrow pH range stability at pH 8.0 and retained 50% of its activity after 430 and 286 min at 50 and 55 °C, respectively. The enzyme was active on substrates containing glucuronic acid methyl ester, showing a lower catalytic efficiency on 4-nitrophenyl 2- O -(methyl-4- O -methyl-α- d -glucopyranosyluronate)-β- d -xylopyranoside than its mesophilic counterparts reported in the literature, which is typical of thermophilic enzymes. St GE1 was proved to be a modular enzyme containing a noncatalytic carbohydrate-binding module. LC-MS/MS analysis provided peptide mass and sequence information that facilitated the identification and classification of St GE1 as a family 15 glucuronoyl esterase that showed the highest homology with the hypothetical glucuronoyl esterase CHGG_10774 of Chaetomium globosum CBS 148.51. This work represents the first example of the purification and identification of a thermophilic glucuronoyl esterase from S. thermophile .  相似文献   

17.
Summary The juvenile hormone esterase (JHE) and juvenile hormone binding protein (JHBP) activities from the last larval instar of 14 species of Lepidoptera (Pieris rapae, Colias eurytheme, Danaus plexippus, Junonia coenia, Hemileuca nevadensis, Pectinophora gossypiella, Spodoptera exigua, Trichoplusia ni, Heliothis virescens, Orygia vetusta, Ephestia elutella, Galleria mellonella, Manduca sexta andEstigmene acrea) were analyzed by analytical isoelectric focusing (IEF). While the multiplicity and isoelectric point of these proteins varied, all of them were mildly acidic (pI 4.0–7.0), and a large number of the species possessed only a single JHE and/or JHBP activity. The Michaelis constants (K m's) of the whole hemolymph JHE activities from selected species for JH III were in the range of 10–7M. The equilibrium dissociation constantK d of the JHBP was determined by Scatchard analysis for selected species as well, with the majority of species having aK d near 10–7M. This information is consistent with JHE acting as a scavenger for JH at various times during development and relying entirely on mass action to remove JH from its protective JHBP complexes. The JHBP should limit nonspecific binding and thus facilitate the rapid transport of the intact hormone through-out the hemocoel. These data indicate that the species currently used in the study of the developmental biology of the Lepidoptera are biochemically similar to a variety of other species in this order.Abbreviations JH juvenile hormone - JHE juvenile hormone esterase - JHBP juvenile hormone binding protein - IEF isoelectric focusing - EPPAT O-ethyl-S-phenyl phosphoramidothiolate - DFP O O-diisopropyl phosphofluoridate  相似文献   

18.
Detailed comparison of acid lipase and acid esterase activities of human spleen, liver and kidney homogenates has been carried out by means of the following substrates: 14C-tripalmitin, alpha-naphthyl acetate, alpha-naphthyl butyrate, alpha-naphthyl laurate, p-nitro-phenyl acetate, butyrate and laurate. In addition, homogenates of the three tissues were subjected to isoelectric focusing in polyacrylamide gels and histochemical staining with the above mentioned naphthyl substrates in the presence and absence of the organophosphate esterase inhibitor diethyl-p-nitrophenyl phosphate (E 600). These studies provide extensive support for the proposal that E 600-resistant acid naphthyl butyryl and lauryl esterase activities in human tissues derive largely from the enzyme acid lipase. The studies suggest that the most specific chromogenic substrate for this enzyme at a biochemical and histochemical level is alpha-napthyl laurate in the presence of E600 (3 X 10(-6) M).  相似文献   

19.
Glyoxalase I from yeast (Saccharomyces cerevisiae) purified by affinity chromatography on S-hexylglutathione-Sepharose 6B was characterized and compared with the enzyme from rat liver, pig erythrocytes and human erythrocytes. The molecular weight of glyoxalase I from yeast was, like the enzyme from Rhodospirillum rubrum and Escherichia coli, significantly less (approx. 32000) than that of the enzyme from mammals (approx. 46000). The yeast enzyme is a monomer, whereas the mammalian enzymes are composed of two very similar or identical subunits. The enzymes contain 1Zn atom per subunit. The isoelectric points (at 4 degrees C) for the yeast and mammalian enzymes are at pH7.0 and 4.8 respectively; tryptic-peptide ;maps' display corresponding dissimilarities in structure. These and some additional data indicate that the microbial and the mammalian enzymes may have separate evolutionary origins. The similarities demonstrated in mechanistic and kinetic properties, on the other hand, indicate convergent evolution. The k(cat.) and K(m) values for the yeast enzyme were both higher than those for the enzyme from the mammalian sources with the hemimercaptal adduct of methylglyoxal or phenylglyoxal as the varied substrate and free glutathione at a constant and physiological concentration (2mm). Glyoxalase I from all sources investigated had a k(cat.)/K(m) value near 10(7)s(-1).m(-1), which is close to the theoretical diffusion-controlled rate of enzyme-substrate association. The initial-velocity data show non-Michaelian rate saturation and apparent non-linear inhibition by free glutathione for both yeast and mammalian enzyme. This rate behaviour may have physiological importance, since it counteracts the effects of fluctuations in total glutathione concentrations on the glyoxalase I-dependent metabolism of 2-oxoaldehydes.  相似文献   

20.
The kinetics of inhibition of the esterase and lipase activities of bovine milk lipoprotein lipase (LPL) were compared. The esterase LPL activity against emulsified tributyrylglycerol was not affected by the enzyme activator apolipoprotein C-II (C-II) and amounted to about 15% of the "plus activator" lipase enzyme activity. Heparin at concentrations of 20 micrograms/ml inhibited 25% of the esterase activity. The reaction followed Henri-Michaelis-Menten kinetics and the inhibition by heparin followed a linear, intersecting, noncompetitive kinetic model. On the other hand, the basal lipase activity of LPL against emulsified trioleoylglycerol (TG) was very sensitive to inhibition by heparin: 1 microgram/ml inhibited about 80% of the reaction and 3 micrograms/ml drove the reaction to zero. The velocity curve for the uninhibited basal LPL activity was sigmoidal with an apparent nH(TG) of 2.94. Heparin inhibited the lipase activity competitively: heparin decreased nH(TG) and increased[TG]0.5 6.4-fold, while TG decreased the nH(Heparin) from 2.14 to 0.95 and caused a 3-fold increase in [Heparin]0.5. C-II, at concentrations lower than 2.5 X 10(-8) M (i.e., lower than KA), countered the inhibitory effects of heparin: at constant inhibitor concentrations, C-II increased nH(TG) from 1.78 to 2.52 and decreased [TG]0.5 about 10-fold; it also increased the apparent Vmax. At the lower C-II concentrations, nH(C-II) was approximately equal to 1.0 and increasing the TG concentrations decreased [C-II]0.5 from 3.8 X 10(-8) to 8.5 X 10(-9) M, with no effect on the nH(C-II). At the higher C-II concentrations, nH(C-II) was 2.5 and TG decreased [C-II]0.5 about 2-fold with no effect on the nH(C-II). In the absence of heparin, C-II had no effect on nH(TG) nor on [TG]0.5, but it increased the apparent Vmax. On the other hand, TG had no effect on nH(C-II) nor on [C-II]0.5, but at any given C-II concentration, the reaction velocity increased with increasing TG concentrations. It is concluded that TG and heparin as well as C-II and heparin are mutually exclusive and that lipoprotein lipase is a multisite enzyme, possibly a tetramer, with three high-affinity catalytic sites, and an equal number of sites for C-II and heparin per oligomer. However, LPL differs from classical allosteric enzymes in that its activator has no effect on substrate cooperativity nor on [S]0.5; its only effect is to increase Vmax by increasing the catalytic rate constant kp by inducing conformational changes in the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号