首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Landgraf KE  Malmberg NJ  Falke JJ 《Biochemistry》2008,47(32):8301-8316
Protein kinase C isoform alpha (PKCalpha) is a ubiquitous, conventional PKC enzyme that possesses a conserved C2 domain. Upon activation by cytoplasmic Ca (2+) ions, the C2 domain specifically binds to the plasma membrane inner leaflet where it recognizes the target lipids phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP 2). The membrane penetration depth and docking angle of the membrane-associated C2 domain is not well understood. The present study employs EPR site-directed spin labeling and relaxation methods to generate a medium-resolution model of the PKCalpha C2 domain docked to a membrane of lipid composition similar to the plasma membrane inner leaflet. The approach measures EPR depth parameters for 10 function-retaining spin labels coupled to the C2 domain, and for spin labels coupled to depth calibration molecules. The resulting depth parameters, together with the known structure of the free C2 domain, provide a sufficient number of constraints to define two membrane docking geometries for C2 domain bound to physiological membranes lacking or containing PIP 2, respectively. In both the absence and presence of PIP 2, the two bound Ca (2+) ions of the C2 domain lie near the anionic phosphate plane in the headgroup region, consistent with the known ability of the Ca (2+) and membrane-binding loops (CMBLs) to bind the headgroup of the PS target lipid. In the absence of PIP 2, the polybasic lipid binding site on the beta3-beta4 hairpin is occupied with PS, but in the presence of PIP 2 this larger, higher affinity target lipid competitively displaces PS and causes the long axis of the domain to tilt 40 +/- 10 degrees toward the bilayer normal. The ability of the beta3-beta4 hairpin site to bind PS as well as PIP 2 extends the lifetime of the membrane-docked state and is predicted to enhance the kinase turnover number of PKCalpha during a single membrane docking event. In principle, PIP 2-induced tilting of the C2 domain could modulate the activity of membrane-docked PKCalpha as it diffuses between membrane regions with different local PS and PIP 2 concentrations. Finally, the results demonstrate that EPR relaxation methods are sufficiently sensitive to detect signaling-induced changes in the membrane docking geometries of peripheral membrane proteins.  相似文献   

2.
The effect of oligomycin and cyclosporine A on Ca(2+)-induced nonspecific permeability of the inner mitochondrial membrane was under study. Both oligomycin and cyclosporine A were able to prevent the activation of nonspecific permeability; however, but cyclosporine A was the only agent which could restore the initial permeability of the inner mitochondrial membrane. The effect of cyclosporine A was not shown to be mediated through redistribution of Ca2+ ions between different subpopulations of mitochondria.  相似文献   

3.
When rat liver mitochondria are allowed to accumulate Ca2+, treated with ruthenium red to inhibit reverse activity of the Ca2+ uniporter, and then treated with an uncoupler, they release Ca2+ and endogenous Mg2+ and undergo large amplitude swelling with ultrastructural expansion of the matrix space. These effects are not produced by Ca2+ plus uncoupler alone. Like other "Ca2+-releasing agents" (i.e. N-ethylmaleimide, t-butylhydroperoxide, oxalacetate, etc.), the development of nonspecific permeability produced by ruthenium red plus uncoupler requires accumulated Ca2+ specifically and is antagonized by inhibitors of phospholipase A2. The permeability responses are also antagonized by ionophore A23187, indicating that a rapid pathway for Ca2+ efflux from deenergized mitochondria is necessary to prevent the development of nonspecific permeability. EGTA can be substituted for ruthenium red to produce the nonspecific permeability change in Ca2+-loaded, uncoupler-treated mitochondria. The permeability responses to EGTA plus uncoupler again require accumulated Ca2+ specifically and are antagonized by inhibitors of phospholipase A2 and by ionophore A23187. The equivalent effects of ruthenium red and EGTA on uncoupled, Ca2+-containing mitochondria indicate that reducing the extramitochondrial Ca2+ concentration to the subnanomolar range produces inhibition of reverse uniport activity. It is proposed that inhibition reflect regulation of the uniporter by a Ca2+ binding site which is available from the cytoplasmic side of the inner membrane. EDTA cannot substitute for EGTA to induce nonspecific permeability in Ca2+-loaded, uncoupled mitochondria. Furthermore, EDTA inhibits the response to EGTA with an I50 value of approximately 10 microM. These data suggest that the uniporter regulatory site also binds Mg2+. The data suggest further that Mg2+ binding to the regulatory site is necessary to inhibit reverse uniport activity, even when the site is not occupied by Ca2+.  相似文献   

4.
The effect of cholesterol incorporation and depletion of the cardiac sarcolemmal sacs on (Ca2+ + Mg2+)-ATPase activity was examined. Cholesterol incorporation to the sarcolemmal sacs was achieved utilizing an in vivo and an in vitro procedure. Cholesterol depleted membranes were obtained in vitro after incubation of the sarcolemmal sacs with inactivated plasma. Arrhenius plots of the (Ca2+ + Mg2+)-ATPase activity showed a triphasic curve when the assays were carried out using a temperature range between 0 and 40 degrees C. The sarcolemmal (Ca2+ + Mg2+)-ATPase activity was shown to be inversely proportional to the cholesterol concentration of the membranes, showing a low ATPase activity with a high cholesterol content and a high ATPase activity when the cholesterol concentration was low. Although the (Ca2+ + Mg2+)-ATPase activity was found to be inhibited in the cholesterol incorporated sarcolemmal sacs, the withdrawal of small amounts of cholesterol from the membranes produced an important stimulatory effect. Changes in (Ca2+ + Mg2+)-ATPase activity due to variation in the membrane cholesterol concentration were shown to be reversible. Our results indicate the possibility of a slow exchange of cholesterol between the tightly bound lipid surrounding the (Ca2+ + Mg2+)-ATPase and the bulk lipid of the sarcolemma.  相似文献   

5.
The in vitro effects of iron (III)-gluconate complex on the production of malondialdehyde and on the Ca2+ transport in isolated rat liver mitochondria were studied. A correlation between the concentration of iron added and the formation of malondialdehyde was found. The enhancement by iron of lipid peroxidative process in the mitochondrial membrane brought about the induction of Ca2+ release from mitochondria. Experimental evidence based on the membrane potential pattern of mitochondria pre-loaded with a low pulse of Ca2+ suggested that Ca2+ efflux was not due to a nonspecific increase in the inner membrane permeability, i.e. to a collapse of membrane potential, but rather to the activation of an apparently selective pathway for Ca2+ release.  相似文献   

6.
Platelet alpha-granules have been reported to lyse upon addition of submillimolar Ca2+ (J. Van der Meulen and S. Grinstein, J. Biol. Chem. 257, 5190). Similar observations in parotid granules have been attributed to extensive lipid hydrolysis. Experiments were performed to assess the role of lipases and proteases in Ca2+-induced lysis of alpha-granules. No differences were detected between lipids of Ca2+-treated and control granules by two-dimensional thin-layer chromatography. Moreover, several phospholipase inhibitors were without effect on Ca2+-induced lysis. Similarly, the polypeptide patterns of control and treated granules were identical and protease inhibitors failed to prevent lysis. In contrast, lysis could be suppressed by increasing the osmolarity of the medium or by substitution with nonpermeating ions. Lysis was unaffected by quinine, amiloride, furosemide, or tetraethylammonium but was inhibited by 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS), a powerful inhibitor of anion transport. The data suggest that Ca2+-induced lysis of alpha-granules does not result from wholesale hydrolysis of either lipids or proteins. Instead, the results are consistent with a Ca2+-mediated change in membrane permeability. In the presence of permeating ions, this leads to entry of salt and osmotically obliged water with consequent swelling and eventual lysis.  相似文献   

7.
Y J Suzuki  W Wang  M Morad 《Cell calcium》1999,25(3):191-198
Cardiac muscle excitation-contraction coupling is controlled by the Ca(2+)-induced Ca2+ release mechanism. The present study examines the effects of a calmodulin antagonist W-7 on Ca2+ current (ICa)-induced Ca2+ release in whole cell-clamped rat ventricular myocytes. Exposure of cells to W-7 suppressed ICa, but the intracellular Ca(2+)-transients showed a lesser degree of reduction, suggesting possible enhancement of Ca(2+)-induced Ca2+ release. The effects of W-7 on the efficacy of Ca2+ release were most prominent at negative potentials. At test potentials of -30 mV, 20 microM W-7 almost completely blocked ICa, but significant Ca(2+)-transients remained, thus causing a four to six-fold increase in the efficacy of Ca(2+)-induced Ca2+ release. The depolarization-dependent Ca(2+)-transients were eliminated in absence of extracellular Ca2+, blocked by Cd2+, and were absent when the sarcoplasmic reticulum was depleted of Ca2+, implicating dependency on Ca(2+)-signaling between the L-type channel and the ryanodine receptor. W-7 mediated increase in the efficacy of Ca(2+)-induced Ca2+ release was eliminated when myocytes were dialyzed with the internal solution containing gluathione (5 mM), suggesting the possible role of cellular redox state in the regulation of Ca2+ release by the calmodulin antagonist.  相似文献   

8.
Electron paramagnetic resonance (EPR) studies of the Ca(2+)-regulatory protein calmodulin (CaM) have been performed. The conformation of CaM in solution changes upon binding of Ca2+ allowing the protein to bind to target proteins existing in the red blood cell membrane. In this study a maleimide spin label, covalently attached to the single cysteine residue of CaM located in the first Ca(2+)-binding domain, was used to monitor allosteric conformational changes induced by interaction of CaM with Ca2+ and subsequently with the red blood cell membrane. The results show, relative to apo-CaM, a significant increase in the apparent rotational correlation time, tau, of the spin label when Ca2+ was present in solution (P less than 0.001). When apo-CaM exposed to red blood cell membrane ghosts in the absence of Ca2+, no significant difference in spin label motion was seen relative to solution, consistent with the idea that Ca2+ is required for CaM to bind to skeletal proteins. When Ca2+ was added to CaM which was then exposed to ghosts, a highly significant increase in tau (decrease in motion) (P less than 0.000001) relative to apo-CaM exposed to ghosts was found. This latter increase in tau is significantly greater than that produced by the addition of Ca2+ to CaM in solution (P less than 0.001). The major interaction sites of CaM were found by photoaffinity labeling and autoradiography on SDS-PAGE to be on the principal skeletal protein, spectrin. EPR was also used to investigate the biophysical correlates of transmembrane signaling. Spin-labeled CaM was bound to the membrane skeleton in the presence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Ruthenium red and/or EGTA prevent cyclic uptake and release of Ca2+ in mitochondria. These compounds inhibit but do not prevent the swelling of liver mitochondria induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. Ruthenium red and/or EGTA have complex effects on the release rate of Ca2+ and other cations induced by t-butyl hydroperoxide or N-ethylmaleimide. To determine the relationship between permeability changes and Ca2+ release in the absence of Ca2+ cycling, a novel method of data collection and analysis is developed which allows the relative time courses of Ca2+ release and Mg2+ release or swelling to be accurately and quantitatively compared. This method eliminates errors in time course comparisons which arise from the aging of mitochondrial preparations and allows data from different preparations to be directly contrasted. Using the method, it is shown that permeability changes caused by Ca2+-releasing agents are not secondary effects arising from Ca2+ cycling between uptake and release carriers. In the absence of Ca2+-cycling inhibitors, Ca2+ release induced by t-butyl hydroperoxide or N-ethylmaleimide is, in part, carrier-mediated. In the presence of EGTA and ruthenium red, Ca2+ release induced by either agent is mediated solely by the permeability pathway. No differences are apparent in the solute selectivity of the inner membrane permeability defect induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. A novel type of Ca2+ release from energized liver mitochondria is reported. This release is induced by EGTA, occurs in the absence of other releasing agents or nonspecific permeability changes, and is rapid (greater than or equal to 50 nmol/min/mg protein).  相似文献   

10.
The Ca2+-induced loss of deformability in human erythrocytes and the recovery of the lost deformability by stomatocytogenic reagents were investigated by means of a new flow electron paramagnetic resonance (EPR) spin label method, which provides information on deformation and orientation characteristics of spin labeled erythrocytes in shear flow. The Ca2+-induced loss of deformability is attributed mainly to the increase in intracellular viscosity resulting from efflux of intracellular potassium ions and water (Gardos effect). Partial recovery of the lost deformability is demonstrated in the presence of stomatocytogenic reagents, such as chlorpromazine, trifluoperazine, W-7, and calmidazolium (R24571). The recovery can not be explained solely by suppression of the Gardos effect due to the reagents. Incorporation of an optimal amount of the reagents into the membrane appears to compensate for the membrane modification due to Ca2+ ions to restore a part of the lost deformability.  相似文献   

11.
The regulation of Ca2+ uptake by receptors is incompletely understood. It has been proposed that the Ca2+ permeability of the plasma membrane increases in response to depletion of a critical intracellular Ca2+ storage compartment (Takemura, H., Hughes, A. R., Thastrup, O., and Putney, J. W. (1989) J. Biol. Chem. 264, 12266-12271). This hypothesis is based largely on the effect of thapsigargin, an inhibitor of endomembrane CA(2+)-ATPases. Due to the existence of an endogenous leak, inhibition of Ca2+ uptake by thapsigargin induces depletion of the stores. This is accompanied by increased plasmalemmal Ca2+ permeability, without change in the level of inositol phosphates. On the other hand, depletion of the intracellular stores by 2,5-di(tert-butyl)-1,4-hydroquinone (BHQ), a chemically unrelated inhibitor of the Ca(2+)-ATPases, fails to induce Ca2+ influx (Kass, G. E., Duddy, S. K., Moore, G. A., and Orrenius, S. (1989) J. Biol. Chem. 264, 15192-15198). In an attempt to reconcile these observations, we analyzed in lymphocytes the mode of action of thapsigargin and BHQ. In addition, we tested the effects of cyclopiazonic acid (CPA), a blocker of the skeletal muscle sarcoplasmic reticulum Ca(2+)-ATPase. All three compounds released Ca2+ from a common intracellular compartment. Thapsigargin and low concentrations of BHQ and CPA concomitantly elevated the plasmalemmal Ca2+ permeability. Higher concentrations of BHQ and CPA produced a secondary inhibition of the Ca2+ entry pathway, by a mechanism seemingly unrelated to their effects on the internal stores. This inhibitory side effect can account for the reported discrepancies between the effects of thapsigargin and BHQ. The data provide further support for the notion that endomembrane Ca2+ stores are functionally coupled to the plasma membrane Ca2+ permeability pathway.  相似文献   

12.
Gd3+ ions were bound to the Ca(2+)-transport site of Ca(2+)-transporting ATPase of the sarcoplasmic reticulum (SR-ATPase) and their effect on the ESR spectrum of spin-probes, which were attached to specific sites on SR-ATPase and embedded in the membranous lipid at various depths from the surface of the membrane, was studied. Spin-labeled reagents, 1-oxyl-2,2-dimethyl-oxazolidine derivatives of maleimidoethyl-keto stearate, collectively abbreviated as MSL(m,n) were mainly used for labeling SR-ATPase. They have Cm- and Cn-hydrocarbon chains, respectively, on both sides of the spin label, of which the Cm-hydrocarbon chain is located distal to the carboxyl group of the keto stearate moiety. Paramagnetic interaction between Gd3+ and a spin probe was detected by measuring the decrease in the intensity of the ESR signal of the probe. Displacement of Gd3+ from the Ca(2+)-transport site by Ca2+, which had been confirmed previously by using fluorescently labeled SR-ATPase (described in the preceding article), led to a significant reversal of the paramagnetic effect of Gd3+ on MSL(12,3) and MSL(10,5) attached to SR-ATPase. On the other hand, the effect of Gd3+ was not reversed by Ca2+ when SR-ATPase labeled with MSL(1,14) or a spin-label specific for the cytoplasmic domain was used. These results led us to conclude that the Ca(2+)-transport site of SR-ATPase is located in the membranous region of the molecule, but that the site is not very far from the surface of the membrane of the sarcoplasmic reticulum.  相似文献   

13.
The (Ca2+ + Mg2+)-dependent ATPase of human erythrocyte 'ghosts' was solubilized and reconstituted to form membranous vesicles capable of energized Ca2+ accumulation. The erythrocyte 'ghosts' for this purpose were prepared by using isoosmotic freeze-haemolysis in the presence of Tween 20 and proteinase inhibitors to stabilize the preparation. The reconstitution procedure is similar to that developed by Meissner & Fleischer [(1974) J. Biol. Chem. 249, 302-309] for skeletal-muscle sarcoplasmic-reticulum in that: (1) deoxycholate is used for the solubilization of the membrane; (2) controlled dialysis at near room temperature, rather than 0 degree C, is required in order to obtain a functional preparation capable of Ca2+ accumulation; and (3) membrane vesicles can be reassembled with protein/lipid ratio (approx. 60% protein and 40% lipid) similar to that of the original membrane.  相似文献   

14.
Formation of palmitic acid/Ca(2+) (PA/Ca(2+)) complexes was suggested to play a key role in the non-classical permeability transition in mitochondria (NCPT), which seems to be involved in the PA-induced apoptosis of cardiomyocytes. Our previous studies of complexation of free fatty acids (FFA) with Ca(2+) showed that long-chain (C:16-C:22) saturated FFA had an affinity to Ca(2+), which was much higher than that of other FFA and lipids. The formation of FFA/Ca(2+) complexes in the black-lipid membrane (BLM) was demonstrated to induce a nonspecific ion permeability of the membrane. In the present work, we have found that binding of Ca(2+) to PA incorporated into the membrane of sulforhodamine B (SRB)-loaded liposomes results in an instant release of a part of SRB, with the quantity of SRB released depending on the concentration of PA and Ca(2+). The pH-optimum of this phenomenon, similar to that of PA/Ca(2+) complexation, is in the alkaline range. The same picture of SRB release has been revealed for stearic, but not for linoleic acid. Along with Ca(2+), some other bivalent cations (Ba(2+), Sr(2+), Mn(2+), Ni(2+), Co(2+)) also induce SRB release upon binding to PA-containing liposomes, while Mg(2+) turns out to be relatively ineffective. As revealed by fluorescence correlation spectroscopy, the apparent size of liposomes does not alter after the addition of PA, Ca(2+) or their combination. So it has been supposed that the cause of SRB release from liposomes is the formation of lipid pores. The effect of FFA/Ca(2+)-induced permeabilization of liposomal membranes has several analogies with NCPT, suggesting that both these phenomena are of similar nature.  相似文献   

15.
A region in the skeletal muscle ryanodine receptor between amino acids 4014 and 4765 was expressed as a trpE fusion protein. Overlay studies revealed that this region bound Ca2+ and ruthenium red, an indicator of Ca(2+)-binding sites. Ca2+ binding was mapped to subregion 13b between amino acids 4246 and 4377, encompassing a predicted high affinity Ca(2+)-binding site, and to subregion 13c between amino acids 4364 and 4529, encompassing two predicted high affinity Ca(2+)-binding sites. Ca2+ binding was then mapped to three shorter sequences, 22(13b1), 36(13c1), and 35(13c2), amino acids long, each encompassing one of the three predicted Ca(2+)-binding sites. Site-directed polyclonal antibodies were raised against these three short sequences and purified on antigen affinity columns. The antibody against sequence 13c2, lying between residues 4478 and 4512, specifically recognized both denatured and native forms of the ryanodine receptor, suggesting that at least part of the 35 amino acid sequence containing the Ca(2+)-binding site is surface-exposed. The affinity purified antibody increased the Ca2+ sensitivity of ryanodine receptor channels incorporated into planar lipid bilayers, resulting in increased open probability and opening time without altering channel conductance. The antibody-activated channel was still modulated by Ca2+, Mg2+, ATP, ryanodine, and ruthenium red. These observations suggest that sequence 13c2 may be involved in Ca(2+)-induced Ca2+ release.  相似文献   

16.
The mechanism responsible for the increase in cytosolic free Ca2+ concentration ([Ca2+]i) during mitogenic stimulation of lymphocytes has been widely investigated. By contrast, little is known about the processes underlying Ca2+i homeostasis in resting (unstimulated) cells. It has been suggested that [Ca2+]i is an important determinant of the rate of Ca2+ influx following mitogenic activation. Using rat thymic lymphocytes, we investigated whether the resting influx pathway is similarly controlled by [Ca2+]i. Otherwise untreated cells were Ca(2+)-depleted by loading with Ca2+ chelators while suspended in Ca(2+)-free solution. Ca2+ depletion induced an 8-fold increase in the rate of unidirectional Ca2+ uptake. The depletion-activated flux was voltage-sensitive and was blocked by La3+ and by compound SK&F 96365, a receptor-operated Ca2+ channel blocker. Upon reintroduction to Ca(2+)-containing solution, the increased influx brought about a rapid recovery of [Ca2+]i. Detailed analysis of the magnitude of the 45Ca2+ flux during this recovery indicated that [Ca2+]i is not the primary determinant of the plasmalemmal Ca2+ permeability. Instead, depletion of an internal thapsigargin-sensitive store correlates with and appears to be responsible for the increased permeability of the plasma membrane. Accordingly, the Ca2+ fluxes induced by intracellular Ca2+ depletion and by thapsigargin were pharmacologically indistinguishable. Mitogenic lectins also released Ca2+ from a thapsigargin-sensitive store and activated a plasmalemmal Ca2+ permeability displaying identical pharmacology. The data support the existence of a coupling process whereby the degree of filling of an internal Ca2+ store dictates the Ca2+ permeability of the plasma membrane. This coupling mechanism is important not only in mediating the effects of mitogens and other agonists, as suggested before, but seemingly also in the control of resting Ca2+i homeostasis in unstimulated cells.  相似文献   

17.
We have shown that the rat liver plasma membrane has at least two (Ca2+-Mg2+)-ATPases. One of them has the properties of a plasma membrane Ca2+-pump (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856); the other one, which we have purified (Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020) and characterized (Lin, S.-H. (1985) J. Biol. Chem. 260, 10976-10980) has no established function. In this study we present evidence that the purified (Ca2+-Mg2+)-ATPase is a plasma membrane ecto-ATPase. In hepatocytes in primary culture, we can detect Ca2+-ATPase and Mg2+-ATPase activities by addition of ATP to the intact cells. The external localization of the active site of the ATPase was confirmed by the observation that the Ca2+-ATPase and Mg2+-ATPase activities were the same for intact cells, saponin-treated cells, and cell homogenates. Less than 14% of total intracellular lactate dehydrogenase, a cytosolic enzyme, was released during a 30-min incubation of the hepatocytes with 2 mM ATP. This indicates that the hepatocytes maintained cytoplasmic membrane integrity during the 30-min incubation with ATP, and the Ca2+-ATPase and Mg2+-ATPase activity measured in the intact cell preparation was due to cell surface ATPase activity. The possibility that the ecto-Ca2+-ATPase and Mg2+-ATPase may be the same protein as the previously purified (Ca2+-Mg2+)-ATPase was tested by comparing the properties of the ecto-ATPase with those of (Ca2+-Mg2+)-ATPase. Both the ecto-ATPase and the (Ca2+-Mg2+)-ATPase have broad nucleotide-hydrolyzing activity, i.e. they both hydrolyze ATP, GTP, UTP, CTP, ADP, and GDP to a similar extent. The effect of Ca2+ and Mg2+ on the ecto-ATPase activity is not additive indicating that both Ca2+- and Mg2+-ATPase activities are part of the same enzyme. The ecto-ATPase activity, like the (Ca2+-Mg2+)-ATPase, is not sensitive to oligomycin, vanadate, N-ethylmaleimide and p-chloromercuribenzoate; and both the ecto-ATPase and purified (Ca2+-Mg2+)-ATPase activities are insensitive to protease treatments. These properties indicate that the previously purified (Ca2+-Mg2+)-ATPase is an ecto-ATPase and may function in regulating the effect of ATP and ADP on hepatocyte Ca2+ mobilization (Charest, R., Blackmore, P.F., and Exton, J.H. (1985) J. Biol. Chem. 260, 15789-15794).  相似文献   

18.
The permeability of isolated mitochondria which have undergone the Ca2+-induced transition can be modulated over a wide range simply by adjusting the concentration of free Ca2+ in the medium. The effect varies sigmoidally with respect to Ca2+ concentration, with an apparent Km of 16 μm at pH 7.0. It is concluded that the trigger site (by “trigger site” we mean the site of binding of Ca2+ which, when Ca2+ is bound, will allow the transition in permeability to occur) is possibly also the site for high-affinity Ca2+ uptake. Added ADP, NADH and Mg2+ inhibit the Ca2+-induced permeability of mitochondria which have undergone the Ca2+-induced transition. Mg2+ and other ions, including H+, act like competitive inhibitors of the Ca2+ effect. In the presence of Ca2+, both neutral and charged molecules of molecular weight <1000 pass readily through the membrane. This response to Ca2+ is interpreted as a gating effect at the internal end of hydrophilic channels which span the inner membrane.  相似文献   

19.
Receptor-activated cytoplasmic Ca2+ oscillations have been investigated using both single cell microfluorometry and voltage-clamp recording of Ca(2+)-dependent Cl- current in single internally perfused acinar cells. In these cells there is direct experimental evidence showing that the ACh-evoked [Ca2+]i fluctuations are due to an inositol trisphosphate-induced small steady Ca2+ release which in turn evokes repetitive Ca2+ spikes via a caffeine-sensitive Ca(2+)-induced Ca2+ release process. There is indirect evidence suggesting that receptor-activation in addition to generating the Ca2+ releasing messenger, inositol trisphosphate, also produces another regulator involved in the control of Ca2+ signal spreading. Intracellular inositol trisphosphate or Ca2+ infusion produce short duration repetitive spikes confined to the cytoplasmic area close to the plasma membrane, but these signals can be made to progress throughout the cell by addition of caffeine or by receptor activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号