首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Adipose differentiation-related protein (ADRP) and TIP47 show sequence similarity, particularly in their N-terminal PAT-1 domain. Under standard culture conditions, ADRP existed in most lipid droplets (LDs), whereas TIP47 was observed only in some LDs and recruited to LDs on treatment with fatty acids. By analyzing deletion mutants, we found that the C-terminal half of TIP47, or more specifically the putative hydrophobic cleft [S.J. Hickenbottom, A.R. Kimmel, C. Londos, J.H. Hurley, Structure of a lipid droplet protein; the PAT family member TIP47, Structure (Camb) 12 (2004) 1199-1207.], was involved in LD targeting and responsiveness to fatty acids. The result contrasted with that observed for ADRP and implied a distinct LD-targeting mechanism for TIP47. Consistent with this, overexpression of Rab18 decreased ADRP, but not TIP47, from LDs, and TIP47 did not displace pre-existing ADRP from LDs. But ADRP may be a factor to control the TIP47 behavior, because TIP47 in LDs increased upon down-regulation of ADRP. The results suggested that the putative hydrophobic cleft is critical for the unique characteristics of TIP47.  相似文献   

2.
The number of proteins known to be associated with lipid droplets (LDs) is increasing. However, the reported distribution of a given protein in the LDs was, in some cases, found not reproduced by other groups. We report here that the choice of the fixation and permeabilization method is important in order to observe LD proteins using immunofluorescence microscopy. Formaldehyde fixation followed by treatment with Triton X-100, one of the most frequently used protocols for the immunolabeling of cultured cells, was not appropriate to label adipocyte differentiation-related protein (ADRP), TIP47, or Rab18 in LDs. Formaldehyde fixation followed by treatment with digitonin or saponin, allowed the visualization of all these proteins in LDs. When cells were fixed with glutaraldehyde, permeabilization by Triton X-100 could also be used for ADRP. These observations suggest that LD proteins are likely to be solubilized by some detergents, and strong cross-linkage to the surrounding protein matrix or mild permeabilization is necessary for their retention on the LD surface. The authors Yuki Ohsaki and Takashi Maeda have contributed equally to this work.  相似文献   

3.
Oleaginous microorganisms are characterized by their ability to store high amounts of triacylglycerol (TAG) in intracellular lipid droplets (LDs). In this work, we characterized a protein of the oleaginous yeast Yarrowia lipolytica that is associated with LD and plays a role in the regulation of TAG storage. This protein is required for the oleaginous phenotype of Y. lipolytica because deletion of the coding gene results in a strongly reduced TAG content of the mutant. Therefore, we named it Oleaginicity Inducing LD protein, Oil1. Furthermore, a mutant overexpressing OIL1 accumulates more TAG than the wild type and is delayed in TAG lipolysis when this process is stimulated. We found that Oil1p plays a role in protecting the TAG content of the LD from degradation through lipases under conditions where the cell aims at building up its TAG reserves. Heterologous expression studies showed that Oil1p rescued the phenotype of a Saccharomyces cerevisiae mutant deleted for the perilipin-like protein Pln1p and that its expression in COS-7 cells resulted in increased TAG accumulation, similar to the phenotype of a perilipin 1 expressing control strain. Despite this phenotypical parallels to mammalian perilipins, Oil1p is not a member of this protein family and its activity does not depend on phosphorylation. Rather, our results suggest that ubiquitination might contribute to the function of Oil1p in Y. lipolytica and that a different mechanism evolved in this species to regulate TAG homeostasis.  相似文献   

4.
The main cellular Ca(2+) sensor, calmodulin (CaM), interacts with and regulates several small GTPases, including Rac1. The present study revealed high binding affinity of Rac1 for CaM and uncovered two new essential binding domains in Rac1: the polybasic region, important for phosphatidylinositol-4-phosphate 5-kinase (PIP5K) interaction, and the adjacent prenyl group. CaM inhibition increased Rac1 binding to PIP5K and induced an extensive phosphatidylinositol 4,5-bisphosphate (PI4,5P(2) )-positive tubular membrane network. Immunofluorescence demonstrated that the tubules were plasma membrane invaginations resulting from an ADP-ribosylation factor 6 (ARF6)-dependent and clathrin-independent pathway. The role of Rac1 in this endocytic route was analyzed by expressing constitutively active and inactive mutants. While active Rac1 impaired tubulation, the inactive mutant enhanced it. Intriguingly, inactive mutant expression elicited tubulation by recruiting PIP5K and inhibiting Rac1 at the plasma membrane. Accordingly, CaM inhibition inactivated Rac1 and increased Rac1/PIP5K interaction. Therefore, our findings highlight an important new role for Rac1 and CaM in controlling clathrin-independent endocytosis.  相似文献   

5.
Double FYVE‐containing protein 1 (DFCP1) is ubiquitously expressed, participates in intracellular membrane trafficking and labels omegasomes through specific interactions with phosphatidylinositol‐3‐phosphate (PI3P). Previous studies showed that subcellular DFCP1 proteins display multi‐organelle localization, including in the endoplasmic reticulum (ER), Golgi apparatus and mitochondria. However, its localization and function on lipid droplets (LDs) remain unclear. Here, we demonstrate that DFCP1 localizes to the LD upon oleic acid incubation. The ER‐targeted domain of DFCP1 is indispensable for its LD localization, which is further enhanced by double FYVE domains. Inhibition of PI3P binding at the FYVE domain through wortmannin treatment or double mutation at C654S and C770S have no effect on DFCP1's LD localization. These show that the mechanisms for DFCP1 targeting the omegasome and LDs are different. DFCP1 deficiency in MEF cells causes an increase in LD number and reduces LD size. Interestingly, DFCP1 interacts with GTP‐bound Rab18, an LD‐associated protein. Taken together, our work demonstrates the dynamic localization of DFCP1 is regulated by nutritional status in response to cellular metabolism.  相似文献   

6.
7.
Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell   总被引:12,自引:0,他引:12  
Caveolin-1 and -2 constitute a framework of caveolae in nonmuscle cells. In the present study, we showed that caveolin-2, especially its beta isoform, is targeted to the surface of lipid droplets (LD) by immunofluorescence and immunoelectron microscopy, and by subcellular fractionation. Brefeldin A treatment induced further accumulation of caveolin-2 along with caveolin-1 in LD. Analysis of mouse caveolin-2 deletion mutants revealed that the central hydrophobic domain (residues 87-119) and the NH(2)-terminal (residues 70-86) and COOH-terminal (residues 120-150) hydrophilic domains are all necessary for the localization in LD. The NH(2)- and COOH-terminal domains appeared to be related to membrane binding and exit from ER, respectively, implying that caveolin-2 is synthesized and transported to LD as a membrane protein. In conjunction with recent findings that LD contain unesterified cholesterol and raft proteins, the result implies that the LD surface may function as a membrane domain. It also suggests that LD is related to trafficking of lipid molecules mediated by caveolins.  相似文献   

8.
Sec7 protein is a guanine nucleotide exchange factor in the ADP-ribosylation factor (ARF) family of small GTP-binding proteins. Aplysia Sec7 proteins (ApSec7s) play many roles in neurite outgrowth and synaptic facilitation in Aplysia neurons. However, the binding property of Aplysia ARF1 by ApSec7 isoforms has not been examined. In this study, we found that the cloned Aplysia ARF1 (ApARF1) protein only localized to the Golgi complex when it was expressed alone in HEK293T cells; however, if ApARF1 was co-expressed with plasma membrane-targeted ApSec7, it localized to both the plasma membrane and the Golgi complex via association with the Sec7 domain of ApSec7. Moreover, in HEK293T cells expressing both ApARF1 and another Sec7 isoform, ApSec7(VPKIS), the pleckstrin homology domain of ApSec7(VPKIS) associated with ApARF1, resulting in its localization to the Golgi complex. Overall, we propose a model in which ApSec7(VPKIS) activates ApARF1 in the Golgi complex, while ApSec7 recruits ApARF1 to the plasma membrane where it activates ApARF1/6 downstream signaling.  相似文献   

9.
Wolins NE  Brasaemle DL  Bickel PE 《FEBS letters》2006,580(23):5484-5491
Humans have evolved mechanisms of efficient fat storage to survive famine, but these mechanisms contribute to obesity in our current environment of plentiful food and reduced activity. Little is known about how animals package fat within cells. Five related structural proteins serve roles in packaging fat into lipid droplets. The proteins TIP47, S3-12, and OXPAT/MLDP/PAT-1 move from the cytosol to coat nascent lipid droplets during rapid fat storage. In contrast, perilipin and adipophilin constitutively associate with lipid droplets and play roles in sustained fat storage and regulation of lipolysis. Different tissues express different complements of these lipid droplet proteins. Thus, the tissue-specific complement of these proteins determines how tissues manage lipid stores.  相似文献   

10.
11.
Human Dectin-1, a type II transmembrane receptor, is alternatively spliced, generating eight isoforms. Of these isoforms, the isoform E (hDectin-1E) is structurally unique, containing a complete C-type lectin-like domain as well as an ITAM-like sequence. So far, little is known about its function. In the present study, we demonstrated that hDectin-1E was not secreted and it mainly resided in the cytoplasm. Using yeast two-hybrid screening, we identified a Ran-binding protein, RanBPM, as an interacting partner of hDectin-1E. GST pull-down assays showed that RanBPM interacted directly with hDectin-1E and the region containing SPRY domain was sufficient for the interaction. The binding of hDectin-1E and RanBPM was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Taken together, our data provide a clue to the understanding of the function about hDectin-1E.  相似文献   

12.
EHD1 regulates cholesterol homeostasis and lipid droplet storage   总被引:1,自引:0,他引:1  
Endocytic transport is critical for the subcellular distribution of free cholesterol and the endocytic recycling compartment (ERC) is an important organelle that stores cholesterol and regulates its trafficking. The C-terminal EHD protein, EHD1, controls receptor recycling through the ERC and affects free cholesterol distribution in the cell. We utilized embryonic fibroblasts from EHD1 knockout mice (Ehd1(-/-)MEF) and SiRNA in normal MEF cells to assess the role of EHD1 in intracellular transport of cholesterol. Surprisingly, Ehd1(-/-)MEFs displayed reduced levels of esterified and free cholesterol, which returned to normal level upon re-introduction of wild-type, but not dysfunctional EHD1. Moreover, triglyceride and cholesterol storage organelles known as 'lipid droplets' were smaller in size in cells lacking EHD1, indicating that less esterified cholesterol and triglycerides were being stored. Decreased cellular cholesterol and reduced lipid droplet size in Ehd1(-/-)MEFs correlated with ineffectual cholesterol uptake via LDL receptor, suggesting involvement of EHD1 in LDL receptor internalization.  相似文献   

13.
Abstract Experiments were designed to investigate the significance of lipid A partial structures, precursor Ia (compound 406), and lipid X (compound 401) to serve as antagonists of interleukin 1 (IL-1) release from human mononuclear cells and monocytes induced by lipopolysaccharide (LPS, endotoxin) of Salmonella aborus equi or synthetic Escherichia coli lipid A (compound 506). A definite inhibition mediated by lipid A partial structures on IL-1 release induced by LPS or lipid A was found in repeated experiments. The inhibitory effect was exterted not only on IL-1 release, but also on IL-1 peptide synthesis at the intracellular level. The results also show that lipid A partial structures have suppressive effects even when added 1–4 after LPS or lipid A. We conclude from these results that lipis A partial structures (precursor Ia and lipid X) have potent immunomodulatory effects on LPS- and lipid A-induced IL-1 release and may become useful reagents to study the mechanism of interaction of LPS and lipid A with cells of the immune system.  相似文献   

14.
Synphilin-1 is an alpha-synuclein binding protein that is involved in the pathogenesis of Parkinson's disease. The present study investigated the phospholipid-binding capacity of Synphilin-1. The C-terminus of Synphilin-1 was found to selectively bind to acidic phospholipids, including phosphatidic acid, phosphatidylserine, and phosphatidylglycerol, but not to naturally charged phospholipids. Synphilin-1 was targeted to cytoplasmic lipid droplets in mammalian cells. The amino acid sequence 610-640 was found to represent the primary determinant site for phospholipid binding. Moreover, the R621C mutation identified in Parkinson's disease abolished Synphilin-1 association with lipid droplets. The lipophilicity of Synphilin-1 might prove relevant to its physiologic function.  相似文献   

15.
Neuroglobin (Ngb) is a newly discovered vertebrate globin that is expressed in the brain and that can reversibly bind oxygen. It has been reported that Ngb levels increase in neurons in response to oxygen deprivation, and that it protects neurons from hypoxia. However, the mechanism of this neuroprotection remains unclear. Recently, we found that oxidized human Ngb bound to the alpha-subunits of heterotrimeric G proteins (Galpha) and acted as a guanine nucleotide dissociation inhibitor for Galpha. To identify other Ngb-binding proteins, we herein screened a human brain cDNA library by using a yeast two-hybrid system. Among the plasmids isolated from positive clones, one contained an insert with 100% sequence identity to human flotillin-1. The interaction of Ngb with flotillin-1 was confirmed by glutathione S-transferase pull-down experiments. Since Galpha exists within lipid rafts critical for signal transduction and flotillin-1 recruits signaling proteins to lipid rafts, flotillin-1 might recruit Ngb to lipid rafts as a means of preventing neuronal death.  相似文献   

16.
Serum amyloid A (SAA) is an acute phase protein that associates with HDL. In order to examine the role of SAA in reverse-cholesterol transport, lipid efflux was tested to SAA from HeLa cells before and after transfection with the ABCA1 transporter. ABCA1 expression increased efflux of cholesterol and phospholipid to SAA by 3-fold and 2-fold, respectively. In contrast to apoA-I, SAA also removed lipid without ABCA1; cholesterol efflux from control cells to SAA was 10-fold higher than for apoA-I. Furthermore, SAA effluxed cholesterol from Tangier disease fibroblasts and from cells after inhibition of ABCA1 by fixation with paraformaldehyde. In summary, SAA can act as a lipid acceptor for ABCA1, but unlike apoA-I, it can also efflux lipid without ABCA1, by most likely a detergent-like extraction process. These results suggest that SAA may play a unique role as an auxiliary lipid acceptor in the removal of lipid from sites of inflammation.  相似文献   

17.
Cervical cancer holds one of the highest morbidity and mortality in various types of cancers. It even leads to the most number of cancer-related deaths of women. A lot of research has indicated that the anomalous expression of long noncoding RNAs (lncRNAs) would induce carcinogenesis and is associated with poor prognosis of patients with cancer. However, the function and mechanism of many lncRNAs still call for further research. Tumor Protein P73 Antisense RNA 1 (TP73-AS1) is no exception. LncRNA TP73-AS1 has been found to promote cancer progressions in various cancers. It is upregulated in cervical cancer cells. The proliferation and migration ability of cervical cancer cells can also be boosted by TP73-AS1 in return. Meanwhile, miRNA-329-3p is downregulated in cervical cancer cells and could bind with both TP73-AS1 and ADP Ribosylation Factor 1 (ARF1). TP73-AS1 inhibited miR-329-3p expression while miR-329-3p inhibited ARF1 expression. More importantly, TP73-AS1 can positively regulate ARF1 expression. Based on all these experiments, TP73-AS1 regulates ARF1 expression by competitively binding with miR-329-3p, thus regulating cervical cancer progression. Further rescue assays confirmed TP73-AS1 regulates cervical cell proliferation and migration via miR-329-3p/ARF1. TP73-AS1 might serve as a novel regulator in cervical cancer.  相似文献   

18.
Neuronal growth regulator 1 (NEGR1) is a GPI-anchored membrane protein that is involved in neural cell adhesion and communication. Multiple genome wide association studies have found that NEGR1 is a generic risk factor for multiple human diseases, including obesity, autism, and depression. Recently, we reported that Negr1−/− mice showed a highly increased fat mass and affective behavior. In the present study, we identified Na/K-ATPase, beta1-subunit (ATP1B1) as an NEGR1 binding partner by yeast two-hybrid screening. NEGR1 and ATP1B1 were found to form a relatively stable complex in cells, at least partially co-localizing in membrane lipid rafts. We found that NEGR1 binds with ATP1B1 at its C-terminus, away from the binding site for the alpha subunit, and may contribute to intercellular interactions. Collectively, we report ATP1B1 as a novel NEGR1-interacting protein, which may help deciphering molecular networks underlying NEGR1-associated human diseases.  相似文献   

19.
Rationale: Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment (TME) and facilitate lung cancer progression. Studies have reported that metabolic reprogramming can regulate the function of CAFs, especially abnormal lipid metabolism. Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids and have a crucial role in lipid metabolism. However, little is known about the synthesis and functions of LDs in lung CAFs.Methods: TetO-EGFRL858R; CCSP-rtTA transgenic mouse model was used to establish a spontaneous pulmonary tumor model and investigate the accumulation of LDs in CAFs. The effect of LDs accumulation on the phenotype change of fibroblasts was estimated in vitro using mouse fibroblast cell lines. RNA sequencing, Western blotting, RT-PCR, and DNA-pull down were performed to determine the mechanism of LDs synthesis in fibroblasts.Results: We found that LDs were enriched in lung CAFs and induced the pro-tumoral phenotype of CAFs with increased expression of α-smooth muscle actin (α-SMA) and Collagen alpha-2 (I) chain (COL1A2). As the main regulator, hypoxia-inducible factor-1α (HIF-1α) was highly expressed in activated fibroblasts and increased the content of LDs. RNA-sequencing results showed that Stearoyl-CoA Desaturase1 (SCD1) was a downstream gene of HIF-1α, which upregulated the number of LDs in fibroblasts. Importantly, SCD1 inhibition reduced the growth of lung tumors, which was correlated with LDs decrease in CAFs. Analysis of human lung adenocarcinoma tissue chip revealed that CAFs with a high level of SCD1 were positively correlated with the expression of HIF-1α and poor survival in lung cancer patients.Conclusions: The HIF-1α/SCD1 axis regulates the accumulation of LDs in CAFs, which might represent a novel target for lung cancer therapy.  相似文献   

20.
ADP-ribosylation factor (ARF)-facilitated recruitment of COP I to membranes is required for secretory traffic. The guanine nucleotide exchange factor GBF1 activates ARF and regulates ARF/COP I dynamics at the endoplasmic reticulum (ER)-Golgi interface. Like ARF and coatomer, GBF1 peripherally associates with membranes. ADP-ribosylation factor and coatomer have been shown to rapidly cycle between membranes and cytosol, but the membrane dynamics of GBF1 are unknown. Here, we used fluorescence recovery after photobleaching to characterize the behavior of GFP-tagged GBF1. We report that GBF1 rapidly cycles between membranes and the cytosol (t1/2 is approximately 17 +/- 1 seconds). GBF1 cycles faster than GFP-tagged ARF, suggesting that in each round of association/dissociation, GBF1 catalyzes a single event of ARF activation, and that the activated ARF remains on membrane after GBF1 dissociation. Using three different approaches [expression of an inactive (E794K) GBF1 mutant, expression of the ARF1 (T31N) mutant with decreased affinity for GTP and Brefeldin A treatment], we show that GBF1 is stabilized on membranes when in a complex with ARF-GDP. GBF1 dissociation from ARF and membranes is triggered by its catalytic activity, i.e. the displacement of GDP and the subsequent binding of GTP to ARF. Our findings imply that continuous cycles of recruitment and dissociation of GBF1 to membranes are required for sustained ARF activation and COP I recruitment that underlies ER-Golgi traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号