首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few species in the genus Grateloupia have been investigated in detail with respect to the development of the auxiliary cell ampullae before or after diploidization. In this study, we document the vegetative and reproductive structures of two new species of Grateloupia, G. taiwanensis S.‐M. Lin et H.‐Y. Liang sp. nov. and G. orientalis S.‐M. Lin et H.‐Y. Liang sp. nov., plus a third species, G. ramosissima Okamura, from Taiwan. Two distinct patterns are reported for the development of the auxiliary cell ampullae: (1) ampullae consisting of three orders of unbranched filaments that branch after diploidization of the auxiliary cell and form a pericarp together with the surrounding secondary medullary filaments (G. taiwanensis type), and (2) ampullae composed of only two orders of unbranched filaments in which only a few cells are incorporated into a basal fusion cell after diploization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments (G. orientalis type). G. orientalis is positioned in a large clade based on rbcL gene sequence analysis that includes the type species of Grateloupia C. Agardh 1822 , Gfilicina. G. taiwanensis clusters with a clade that includes the generitype of Phyllymenia J. Agardh 1848 , Ph. belangeri from South Africa; that of Prionitis J. Agardh 1851 , Prlanceolata from Pacific North America; and that of Pachymeniopsis Y. Yamada ex Kawab. 1954, Palanceolata from Japan. A reexamination of the type species of the genera Grateloupia, Phyllymenia, Prionitis, and Pachymeniopsis is required to clarify the generic and interspecific relationships among the species presently placed in Grateloupia.  相似文献   

2.
3.
Asteromenia gen. nov. (Rhodymeniales, Rhodophyta) is proposed with a single species, Asteromenia peltata (W. R. Taylor) comb. nov. (basionym: Fauchea peltata W. R. Taylor). Thalli of the proposed new genus are stipitate with dorsiventral, peltate blades that are initially circular in shape but with age become stellate with ligulate arms. Internally, the blades have a polystromatic medulla of large, hyaline cells, grading into a cortex of smaller, pigmented cells. Clusters of translucent cells occur on the dorsal surface of the blade. Tetrasporangia are formed by transformations of intercalary midcortical cells. Mature tetrasporangia have cruciately arranged spores and are densely aggregated in the cortex, mostly on the ventral surface, but occasional tetrasporangia also arise on the dorsal surface. Carpogonial branches are four-celled and arise on inner cortical cells. Auxiliary cells are borne on auxiliary mother cells attached to supporting cells of the carpogonial branches. Cystocarps are protuberant, with well-developed, ostiolate pericarps that often have extended, proboscis-like necks. The new genus differs from the previously described peltate or dorsiventral taxa in the Rhodymeniaceae by its polystromatic medulla (Maripelta and Sciadophycus have a monostromatic medulla), intercalary tetrasporangia formed in an unmodified cortex, and four-celled carpogonial branches (Halichrysis, as typified by H. depressa (J. Agardh) F. Schmitz, has terminal tetrasporangia in nemathecia and three-celled carpogonial branches).  相似文献   

4.
An examination of a series of collections from the coast of Natal, South Africa, has revealed the presence of two species of Martensia C. Hering nom. cons: M. elegans C. Hering 1841, the type species, and an undescribed species, M. natalensis sp. nov. The two are similar in gross morphology, with both having the network arranged in a single band, and with reproductive thalli of M. elegans usually larger and more robust than those of M. natalensis. Molecular studies based on rbcL sequence analyses place the two in separate, strongly supported clades. The first assemblage occurs primarily in the Indo‐West Pacific Ocean, and the second is widely distributed in tropical and warm‐temperate waters. Criteria that have been used in the past for separating the two, namely, the number and shape of the blades, the presence of a single‐ versus a multiple‐banded network, and blade margins entire or toothed, were determined to be unreliable. Although the examination of additional species is required, the morphology and position of procarps and cystocarps, whether at or near the corners of the longitudinal lamellae and the cross‐connecting strands or along the lobed, membranous edges of the longitudinal lamellae or on the thallus margins, may prove to be diagnostic at the subgenus level. We recognize subg. Martensia, including the type of Martensia: M. elegans and subg. Mesotrema (J. Agardh) De Toni based on Martensia pavonia (J. Agardh) J. Agardh.  相似文献   

5.
Russell  L. K.  Hurd  C. L.  Nelson  W.A.  Falshaw  R.  & Broom  J.E. 《Journal of phycology》2000,36(S3):59-60
Taxonomic discrimination in the genus Pachymenia (Rhodophyta) in New Zealand is based primarily on phenotypic characters of the thallus. The taxonomic problems raised by this classification method are due to highly variable thallus characters such as blade thickness, blade width, degree of thallus branching, and variation in anatomical characters. Delineation of species is further complicated by a lack of adequate knowledge about the responses of phenotype to environmental variation. There are currently three species recognized in this genus that are endemic to New Zealand: a prostrate species P. crassa , and two erect species, P. laciniata and P. lusoria. In this study, two approaches are used to investigate the current delineation of these species. Morphological and anatomical characters of field collected material and herbarium specimens from throughout the species' distributional ranges were quantified. Multivariate analyses were used to identify discrete phenotypic groups. Species relationships were further analyzed by quantifying the variation found within the internal transcribed spacer region (ITS) of the nuclear ribosomal DNA. The results obtained from both approaches will be discussed with regards to possible re-classification of species relationships within this genus. We suggest that the two erect species should be merged, and the currently recognized P. lusoria should be separated into at least two taxonomic groups.  相似文献   

6.
Sargassum C. Agardh (1820) is a taxonomically difficult genus distributed worldwide and reported as the most species‐rich genus of the Fucales. It is especially abundant in the Pacific where decreasing species richness is reported to occur from west to east. New Caledonia has been recognized as one of the hotspots of Sargassum diversity; however, species lists available for this region are old and incomplete and have not yet been updated with regard to the latest taxonomic revisions published. This study aimed at revising Sargassum diversity in New Caledonia and to assess its geographic affinities with neighboring Pacific regions. We used combined morphological and DNA analyses on new collections and examined numerous type specimens. Although 45 taxa have been listed in the literature, most of them have been either transferred to synonymy since or misidentified, and in this study, only 12 taxa were recognized as occurring in New Caledonia. They belong to the subgenus Sargassum sect. Binderianae (Grunow) Mattio et Payri (2), sect. Ilicifoliae (J. Agardh) Mattio et Payri (2), sect. Polycystae Mattio et Payri. (1), sect. Sargassum (4), sect. Zygocarpicae (J. Agardh) Setch. (2), and subgenus Phyllotrichia (Aresh.) J. Agardh (1). New Caledonian Sargassum flora appeared as the second richest in the region after the Pacific coast of Australia, with which it has shown high similarity, and shared species with all neighboring regions. One species, S. turbinarioides Grunow, is considered as endemic to New Caledonia. The low genetic diversity detected among several polymorphic species belonging to sect. Sargassum is also discussed.  相似文献   

7.
Eucheuma acanthocladum (Harvey) J. Agardh, E. gelidium (J Agardh) J. Agardh, E. echinocarpum Areschoug and E. schrammii(P. et H. Crouan) J. Agardh from the tropical and warm temperate waters of the western Atlantic Ocean and Caribbean Sea are transferred to a new genus, Meristiella. Meristiella exhibits the following Unique combination of characters among genera in the Solieriaceae: (1) rotated periaxial cells, (2) a loosely filamentous medulla. (3) an auxiliary cell complex, (4) Single and twin connecting filaments and (5) spinose cystocarps composed of a central, small-celled placentum, based on its reproductive features, Meristiella. is assigned to the tribe Agardhielleae. Culture experiments and herbarium studies provide evidence that E, gelidium and E. acantghocladum are conspecific. Lectotypes are designated for the included species.  相似文献   

8.
The only member of the red algal family Solieriaceae known from New Zealand is the endemic Sarcodiotheca colensoi (Hook. & Harv.) Kylin. This study shows that it differs in several respects from the type S. furcata (Setch. & Gard.) Kylin; thus a new genus Placentophora is created for the New Zealand alga. Although P. colensoi nov. comb. is retained in the Solieriaceae on the basis of vegetative, spermatangial, tetrasporangial, carpogonial-branch and early gonimoblast features, it differs from typical members of that family in its pattern of later carposporophyte development. After a single gonimoblast initial is cut off from the auxiliary cell towards the center of the thallus, further gonimoblasts develop from the initial as ramifying, radiating filaments. These filaments enter an extensive “nutritive-cell” region surrounding the auxiliary cell, form, numerous connections to the “nutritive” cells, and incorporate most of them into a central placenta of interconnected, and variously-fused vegetative and gonimoblast cells. Carpo-sporangia then form in short chains around the periphery of the placenta. The cystocarp lacks both a central fusion cell and a sterile-celled investment, or “Faserhülle.” The distinctive carposporophyte of Placentophora is compared to patterns of gonimoblast development, known in other members of the Solieriaceae.  相似文献   

9.
Two species of Phycodrys, Phycodrys quercifolia (Bory) Skottsberg and Phycodrys profunda E.Y.Dawson were previously recorded from New Zealand. However, an examination of Phycodrys collections from the New Zealand region showed that all were morphologically different from P. quercifolia (Type locality: the Falkland Islands) and P. profunda (Type locality: CA, USA). RbcL sequence analyses established that the New Zealand Phycodrys species formed a natural assemblage within the genus, consisting of three new species: P. novae-zelandiae sp. nov., P. franiae sp. nov. and P. adamsiae sp. nov. Phycodrys novae-zelandiae is the largest of the three, up to 20 cm in height, with a distinct midrib and multicellular, opposite to subopposite lateral macroscopic veins. It has entirely monostromatic blades except near the midrib and veins, and its procarp contains a three-celled sterile group one (st1) and a one-celled sterile group two (st2). Phycodrys franiae was previously treated as a cryptic species among herbarium collections of P. ‘quercifolia’. It is smaller (4–11 cm high) with weakly developed midribs and veins, the blade is tristromatic throughout, except at the growing margins, and the procarp consists of a four-celled st1 and a two–three-celled st2. Phycodrys adamsiae, previously reported as P. profunda, is a small decumbent or prostrate plant, 1–8 cm long, with a midrib and inconspicuous lateral veins. The blades are tristromatic with serrated margins, two–four-celled surface spines and multicellular marginal holdfasts that differ from those of Californian specimens. The tetrasporangia are borne on marginal bladelets. Phylogenetic analyses place the New Zealand species in a separate group that is distantly removed from most other Phycodrys species.  相似文献   

10.
Morphological and molecular studies demonstrate that the tribe Ptiloteae (Ceramiaceae, Ceramiales) is polyphyletic. The Ptiloteae, sensu stricto, occur only in the Northern Hemisphere and all Southern Hemisphere representatives belong in other tribes. Three genera (Euptilota, Seirospora, and Sciurothamnion) are transferred to the Euptiloteae Hommersand et Fredericq, trib. nov., and the Callithamnieae is revised to include three Ptilota‐like genera, Georgiella, Falklandiella, and Diapse, and two new genera. Heteroptilon Hommersand, gen. nov. is erected to receive Euptilota pappeana Kützing 1849 and Aglaothamnion rigidulum De Clerck, Bolton, Anderson et Coppejans 2004 from South Africa, and Aristoptilon Hommersand et W. A. Nelson, gen. nov. is established to receive Euptilota mooreana Lindauer 1949 from New Zealand. The principal difference between the Euptiloteae and the Callithamnieae is seen in the earliest stages after fertilization. The fertilized carpogonium enlarges and forms a pair of tube‐like protuberances directed toward the auxiliary cells that are cut off as connecting cells in the Euptiloteae, whereas in the Callithamnieae the carpogonium usually divides into two cells, each of which cuts off a small connecting cell that fuses with an adjacent enlarging auxiliary cell. Nuclei are terminal in spermatangia of the Euptiloteae, subtended by mucilaginous vesicles, and are medial in the Callithamnieae situated between apical and basal vesicles. The Euptiloteae and Callithamnieae (including the Ptilota‐like members) are each strongly supported in maximum‐likelihood tree topologies resulting from analyses of combined 18S rDNA, 28S rDNA, 16S rDNA, and rbcL data sets. Their sister relationship is also well supported.  相似文献   

11.
Some Liagora and Izziella distributed in Taiwan display a wide range of morphological variation and can be difficult to distinguish. To clarify species concepts, we applied DNA sequence analyses and examined carposporophyte development in detail. These studies revealed two new species, which are described herein as Izziella hommersandii sp. nov. and Izziella kuroshioensis sp. nov. I. kuroshioensis superficially resembles Izziella formosana and Izziella orientalis in that its involucral filaments subtend rather than surround the lower portion of the gonimoblast mass (= Izziella type) and a fusion cell is formed from cells of the carpogonial branch, but it can be separated by differences in the cell numbers and branching pattern of the involucral filaments, as well as thallus morphology. In contrast to other species that also bear short lateral branchlets, I. hommersandii is unique in possessing a mixture of short and long involucral filaments, a phenomenon not reported before. The length of the involucral filaments is species specific among species of Izziella and contrasts to the behavior of the involucral filaments after fertilization in species such as “Liagorasetchellii [= Titanophycus setchellii comb. nov.], in which the filaments completely envelop the gonimoblast. In addition, the cells of the carpogonial branch in Titanophycus do not fuse after fertilization to form a fusion cell. Thus, a combination of characters with respect to the behavior of the carpogonial branch and the involucral filaments after fertilization is very useful for delineating species boundaries in Izziella and for separating Titanophycus from Izziella and Liagora.  相似文献   

12.
Species discrimination within the gigartinalean red algal genus Hypnea has been controversial. To help resolve the controversy and explore phylogeny within the genus, we determined rbcL sequences from 30 specimens of 23 species within the genus, cox1 from 22 specimens of 10 species, and psaA from 16 species. We describe H. caespitosa as a new species characterized by a relatively slender main axis; a pulvinate growth habit with entangled, anastomosing, and subulate uppermost branches; and unilaterally borne tetrasporangial sori. The new species occurs in the warm waters of Malaysia, the Philippines, and Singapore. The phylogenetic trees of rbcL, psaA, and cox1 sequences showed a distant relationship of H. caespitosa to H. pannosa J. Agardh from Baja California and the marked differentiation from other similar species. The rbcL + psaA tree supported monophyly of the genus with high bootstrap values and posterior probabilities. The analysis revealed three clades within the genus, corresponding to three sections, namely, Virgatae, Spinuligerae, and Pulvinatae first recognized by J. G. Agardh. Exceptions were H. japonica T. Tanaka in Pulvinatae and H. spinella (C. Agardh) Kütz. in Spinuligerae.  相似文献   

13.
Two new species of brown algae (Phaeophyceae), Padina moffittiana Abbott et Huisman, sp. nov. and Cutleria irregularis Abbott et Huisman, sp. nov., are described from the Hawaiian Islands (between 19°04′N, 155°35′W and 28°25′N, 178°20′W). In addition, the new combination Cutleria canariensis is proposed for Aglaozonia canariensis. New observations are presented on Nereia intricata Yamada, a species described 67 years ago and known only from its type specimen. New records of a further 14 species are given for the Hawaiian Islands. These 17 taxa bring the total number of species of brown algae recorded for the Hawaiian Islands to 55, an increase of 28%. Of the 15 new records, two are recent ‘accidental’ introductions: Dictyota flabellata (Collins) Setchell et Gardner and Sargassum muticum (Yendo) Fensholt from California. Six records are notable because of their great distances from previously known collections: Nereia intricata Yamada from the Ryukyu Is., Japan; Discosporangium mesarthrocarpum (Meneghini) Hauck, from the Adriatic, Mediterranean, warm Atlantic and southern Australia; Distromium flabellatum Womersley, Spatoglossum macrodontum J. Agardh, and Sporochnus moorei Harvey, from Australia; Desmarestia ligulata (Lightfoot) Lamouroux from temperate and colder waters in the Pacific and Atlantic. A comparison with some Japanese species of Padina confirms that Padina japonica Yamada should be subsumed with Padina sanctae‐crucis Børgesen, as proposed earlier.  相似文献   

14.
Phycologists have hypothesized that the diminutive fronds produced by species in the genera Chiharaea and Yamadaia, which are composed of comparatively few genicula and intergenicula, represent morphological intermediates in the evolution of articulated corallines from crustose ancestors. We test this “intermediate frond hypothesis” by comparing rbcL sequences from the generitype species Chiharaea bodegensis and Yamadaia melobesioides to sequences from other coralline genera. We demonstrate that Chiharaea includes two other NE Pacific species, Arthrocardia silvae and Yamadaia americana. Chiharaea species are characterized morphologically by inflated intergenicula and axial conceptacles with apical or acentric pores. Although relationships among the three species are unresolved, Chiharaea bodegensis, C. americana comb. nov., and C. silvae comb. nov. are distinguished from one another by DNA sequences, morphology, habitat, and biogeography. Chiharaea occurs together with Alatocladia, Bossiella, Calliarthron, and Serraticardia macmillanii in a strongly supported clade of nearly endemic north Pacific articulated coralline genera and species that have evolved relatively recently compared to other articulated corallines. In contrast, NW Pacific Yamadaia melobesioides belongs in a clade with Corallina officinalis, the generitype species of Corallina, and therefore we reduce Yamadia to a synonym of Corallina and propose Corallina melobesioides comb. nov. We reject the ‘intermediate frond hypothesis’ and conclude that Chiharaea and Yamadaia are recently derived taxa that evolved from articulated coralline ancestors and represent a reduction in the number of genicula and intergenicula.  相似文献   

15.
Coralline red algae from the New Zealand region were investigated in a study focused on documenting regional diversity. We present a multi‐gene analysis using sequence data obtained for four genes (nSSU, psaA, psbA, rbcL) from 68 samples. The study revealed cryptic diversity at both genus and species levels, confirming and providing further evidence of problems with current taxonomic concepts in the Corallinophycidae. In addition, a new genus Corallinapetra novaezelandiae gen. et sp. nov. is erected for material from northern New Zealand. Corallinapetra is excluded from all currently recognized families and orders within the Corallinophycidae and thus represents a previously unrecognized lineage within this subclass. We discuss rank in the Corallinophycidae and propose the order Hapalidiales.  相似文献   

16.
17.
18.
Spatial and temporal patterns of growth, erosion, productivity, and morphology of the dominant habitat‐forming kelp Ecklonia radiata (C. Agardh) J. Agardh were studied bimonthly over 1.5 years in a southern New Zealand fjord characterized by strong gradients in light and wave exposure. Spatial differences in growth were observed with rates at two outer coast, high‐light, wave‐exposed sites reaching 0.42 and 0.45 cm · d?1, respectively, compared to 0.27 cm · d?1 at an inner, more homogeneous site. Sporophyte productivity was similar among sites, although population productivity was greater at the outer sites due to population density being 5‐fold greater than at the inner site. It was expected that the inner site would have no pronounced seasonal pattern in growth and productivity due to its homogeneity; however, all three sites displayed maximum rates in late winter/spring and minimal in autumn. Growth rates were 2‐fold greater during the first growth period than the following year. This discrepancy was not correlated to inorganic nitrogen (N) levels, which remained low year‐round (<4 μM), and is likely a result of an interaction between light and temperature, and the photosynthetic capability of E. radiata. Variable pigment content indicated photoacclimation at the inner site. Morphological differences were observed between sites, with E. radiata from the inner site having longer, wider, thinner blades and longer stipes. While E. radiata displayed spatial differences in growth, erosion, productivity, and morphology, populations displayed no temporal differences. These results highlight the need for greater understanding of the mechanisms influencing kelp growth and productivity in a unique marine environment.  相似文献   

19.
An examination of cystocarps from the rarely collected southern Australian alga currently known as Lomentaria corynephora (J. Agardh) Kylin has shown it to be a member of the Rhodymeniales but incorrectly placed in Lomentaria. As it is not referable to any of the genera presently ascribed to the order, the new genus Semnocarpa is proposed to accommodate its suite of unique features. Semnocarpa closely resembles Lomentaria in habit and in having basally septate branches, a peripheral network of widely separated medullary filaments around the cell-free (but mucilage-filled) centres of the main and lateral axes, gland cells directed inwardly on scattered medullary cells, and tetrasporangia produced laterally from surface cortical cells that line deep cavities in the branch surfaces. Features of the mature cystocarp, however, strongly differentiate Semnocarpa from Lomentaria. The carposporophyte has a fusion cell in which outlines of the component cells remain discernible, as opposed to having a fully consolidated fusion cell, and is laxly enclosed in a system of filaments derived from surrounding inner cortical cells. The cystocarp is entirely submerged within the bearing branch, there being no protuberant pericarp derived from the outer cortex of the sort previously thought to be a uniform feature of the family Lomentariaceae and virtually all Rhodymeniales. These features suggest that Semnocarpa is likely to be a highly derived member of the Lomentariaceae. A second species is newly described from material collected in Western Australia. Semnocarpa minuta sp. nov. differs from S. corynephora in its exclusively epiphytic habit, two-layered medulla, smaller stature and extensive crustose holdfast.  相似文献   

20.
Difficulty in species identification of Sargassum (Sargassaceae, Fucales) is partly attributed to the high polymorphism among its individuals and populations. This study aimed at assessing morphological and genetic variations in two varieties, var. hemiphyllum J. Agardh and var. chinense J. Agardh, of Sargassum hemiphyllum (Turner) C. Agardh, a widely distributed species in the northwestern Pacific. We investigated 26 measurable, five numerical, and 33 categorical morphological parameters associated with different branching levels of specimens from each of six localities within its distribution range using cluster analysis (CA) and principal coordinate analysis (PCoA). Leaf size of the primary and secondary branching levels and the vesicle size of the secondary branches of the specimens examined were determined to be the most important morphological parameters that were significantly different among populations. Change in leaf and vesicle length of individuals among the six populations followed a latitudinal gradient, with smaller leaves and vesicles associated with northern populations and larger ones in the southern populations. The possible influence of the gradual change in sea surface temperatures (SSTs) along this gradient in the northwestern Pacific on leaf and vesicle morphologies of this species was suggested. PCR‐RFLP analysis of the RUBISCO spacer in the chloroplast genome revealed two distinct and highly homogenous clades, a China clade and a Japan‐Korea clade, which corresponded to var. chinense and var. hemiphyllum, respectively. The formation of refugia along the “Paleo‐coast” in the East China Sea during glacial periods is suggested to have led to the vicariance of ancestral populations of S. hemiphyllum and thus to have promoted genetic differentiation. The massive freshwater outflow of the Yellow and Yangtze rivers may continue to act as a barrier, prolonging the allopatric distribution of the two varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号