首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The systematic position of Amphidoma caudata Halldal within the genus Amphidoma has remained uncertain as a result of its plate formula and the absence of molecular phylogenetic data. Also, this thecate dinoflagellate taxon has been used to designate two distinct morphotypes. The present study aims to clarify the generic affiliation of Amphidoma caudata and the taxonomic value of two different morphotypes M1 and M2. The new examination of the plate formula using SEM showed that it was the same for both morphotypes and that it corresponded to the tabulation of the recent erected genus Azadinium Elbrächter et Tillmann. Morphometric analysis, using cell size, length of apical projection in conjunction with the cell length, and the ratio of horn and spine showed that M1 and M2 formed two distinct groups. These results were supported by a molecular approach, revealing notable differences in the sequences of LSU rDNA and ITS region between these two morphotypes. Phylogenetic analyses inferred either from LSU and combined SSU, ITS region and COI data positioned M1 and M2 in a sister cluster of Azadinium species while Amphidoma languida Tillmann, Salas et Elbrächter, the only species of Amphidoma for which sequence data were available, was situated in a basal position of the Azadinium clade. Thus, we propose the transfer of Amphidoma caudata to the genus Azadinium and, consequently, the rehabilitation of the original tabulation of the genus Amphidoma Stein. To discriminate the two morphotypes, we propose a rank of variety with the following designations: Azadinium caudatum var. caudatum and Azadinium caudatum var. margalefii.  相似文献   

4.
Ceramium inkyuii sp. nov. is newly described based on samples collected from the east coast of Korea and compared with similar species such as C. paniculatum and C. tenerrimum. The new species is characterized by pseudo‐dichotomously branched thalli with a twist in the upper part, a single row of spines on the abaxial side, strongly inrolled apices, and the presence of gland cells. In contrast, C. paniculatum has alternate branches and lacks gland cells, and C. tenerrimum is spineless and also lacks gland cells. Ceramium inkyuii was observed to be an annual species producing tetrasporangia in the spring to summer and cystocarps in the fall. Plastid‐encoded rbcL and nuclear small subunit (SSU) rDNA sequences were determined in four samples of C. inkyuii from different locations and six samples of four putative relatives. All four C. inkyuii replicates from three different locations had identical sequences of each gene, and the interspecific sequence divergences were enough to warrant its natural entity. The phylogenies of the rbcL and SSU rDNA sequences also indicate the monophyly of C. inkyuii. The spinous C. inkyuii was more closely related to the spineless C. tenerrimum than to the spinous C. paniculatum.  相似文献   

5.
Sargassum subgenus Phyllotricha currently includes seven species restricted to Australian and New Zealand coasts. A recent study of Cystoseira and other Sargassaceae genera based on mitochondrial 23S DNA and chloroplast‐encoded psbA sequences resulted in the most widely distributed species of subgenus Phyllotricha, Sargassum decurrens, being transferred to the reinstated monospecific Sargassopsis Trevisan. The fate of the residual six Phyllotricha species, however, was not considered. The present study examines these Phyllotricha species, alongside other Sargassum subgenera, Sargassopsis, Sirophysalis trinodis (formerly Cystoseira trinodis) and the New Zealand endemic Carpophyllum Greville, using morphological evidence and the molecular phylogenetic markers cox3, ITS‐2 and the rbcL–S spacer. Our results suggest both the genus Sargassum and Sargassum subgenus Phyllotricha are polyphyletic as currently circumscribed. Four S. subgen. Phyllotricha species, i.e. S. sonderi, S. decipiens, S. varians and S. verruculosum, form a monophyletic group sister to the genus Carpophyllum, and S. peronii is genetically identical to S. decurrens with regard to all three loci. We propose the resurrection of the genus Phyllotricha Areschoug, with type species Phyllotricha sonderi, and include the new combinations Phyllotricha decipiens, Phyllotricha varians and Phyllotricha verruculosum. Sargassum peronii, S. heteromorphum and S. kendrickii are transferred to Sargassopsis and Sargassum peronii is considered a synonym of Sargassopsis decurrens.  相似文献   

6.
Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS‐1, and ITS‐2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium‐like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.  相似文献   

7.
A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid‐like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid‐like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.  相似文献   

8.
Some Liagora and Izziella distributed in Taiwan display a wide range of morphological variation and can be difficult to distinguish. To clarify species concepts, we applied DNA sequence analyses and examined carposporophyte development in detail. These studies revealed two new species, which are described herein as Izziella hommersandii sp. nov. and Izziella kuroshioensis sp. nov. I. kuroshioensis superficially resembles Izziella formosana and Izziella orientalis in that its involucral filaments subtend rather than surround the lower portion of the gonimoblast mass (= Izziella type) and a fusion cell is formed from cells of the carpogonial branch, but it can be separated by differences in the cell numbers and branching pattern of the involucral filaments, as well as thallus morphology. In contrast to other species that also bear short lateral branchlets, I. hommersandii is unique in possessing a mixture of short and long involucral filaments, a phenomenon not reported before. The length of the involucral filaments is species specific among species of Izziella and contrasts to the behavior of the involucral filaments after fertilization in species such as “Liagorasetchellii [= Titanophycus setchellii comb. nov.], in which the filaments completely envelop the gonimoblast. In addition, the cells of the carpogonial branch in Titanophycus do not fuse after fertilization to form a fusion cell. Thus, a combination of characters with respect to the behavior of the carpogonial branch and the involucral filaments after fertilization is very useful for delineating species boundaries in Izziella and for separating Titanophycus from Izziella and Liagora.  相似文献   

9.
Large Fucales are abundant on coastal coral reefs of the Great Barrier Reef, but are often limited by the availability of inorganic nutrients. Particle loads in these reef waters are high, which is generally perceived as detrimental for aquatic plants due to a reduction of light. Here, I provide evidence that several abundant Sargassum species supplement their nutrient supply with nutrients derived from the layer of particulate matter (PM) deposited on their thalli. In experiments involving removal or addition of PM, growth rates of Sargassum spp. were up to 180% higher when particles were present on the thalli. Tissue nitrogen and phosphorus levels of thalli with a surface PM layer were 10%–30% higher than those of thalli without PM. The amount of PM deposited in situ on thalli of five species of brown algae ranged from 0.6 to 0.9 g Corg·g−1 dry weight alga, depending on the species' morphology. I suggest that a nutrient-rich diffusive boundary layer is created on the thallus surface by an epiphytic microbial community that remineralizes the particulate nutrients. When algal growth is nutrient limited, the use of particle-derived nutrients as a source alternative to nutrients in the water column may outweigh any potential adverse effects of the thallus particle layer.  相似文献   

10.
The phylogeny of Ectocarpus and Kuckuckia strains representing widely separated populations from both hemispheres was inferred from sequence analysis of the internal transcribed spacers of the nuclear ribosomal DNA (ITS 1—5.8S-ITS 2) and the spacer region in the plastid-encoded ribulose- bis -phosphate-carboxylase (RUBISCO) cistron (partial rbc L-spacer-partial rbc S ). Both sequences resulted in matching phylogenies, with the RUBISCO spacer region being most informative at the level of genera and species and the internal transcribed spacer sequences at the level of species and populations. Three major clades were formed by strains previously described by morphology and physiology as Kuckuckia, E. fasciculatus, and E. siliculosus, confirming the validity of these taxa . Ectocarpus and Kuckuckia are regarded as sibling taxa with respect to the outgroup species Feldmannia simplex, Hincksia mitchelliae, and Pilayella littoralis. The clade formed by sexual E. siliculosus strains and most asexual Ectocarpus strains was subdivided into several clades that are consistent with geographical races within E. siliculosus. The inferred phylogeny of Ectocarpus corresponds generally with results from cross-fertilization experiments, morphology, and lipid analysis. A hypothesis on the origin and dispersal of E. siliculosus suggests several natural dispersal events during periods of global cooling as well as recent and possibly anthropogenic dispersal events .  相似文献   

11.
Laurencia marilzae Gil‐Rodríguez, Sentíes et M.T. Fujii sp. nov. is described based on specimens that have been collected from the Canary Islands. This new species is characterized by distinctive yellow–orange as its natural habitat color, a terete thallus, four pericentral cells per vegetative axial segment, presence of secondary pit‐connections between adjacent cortical cells, markedly projecting cortical cells, and also by the presence of corps en cerise (one per cell) present in all cells of the thallus (cortical, medullary, including pericentral and axial cells, and trichoblasts). It also has a procarp‐bearing segment with five pericentral cells and tetrasporangia that are produced from the third and fourth pericentral cells, which are arranged in a parallel manner in relation to fertile branchlets. The phylogenetic position of this taxon was inferred based on chloroplast‐encoded rbcL gene sequence analyses. Within the Laurencia assemblage, L. marilzae formed a distinctive lineage sister to all other Laurencia species analyzed. Previously, a large number of unique diterpenes dactylomelane derivatives were isolated and identified from this taxon. L. marilzae is morphologically, genetically, and chemically distinct from all other related species of the Laurencia complex described.  相似文献   

12.
The taxonomy and biogeography of a genus with species that occur in geographically isolated regions is interesting. The brown algal genus Ishige Yendo is a good example, with species that apparently inhabit warm regions of both the northwestern and northeastern Pacific Ocean. We determined the sequences of mitochondrial cox3 and plastid rbcL genes from specimens of the genus collected over its distributional range. Analyses of the 86 cox3 and 97 rbcL sequences resulted in congruent trees in which Ishige sinicola (Setch. et N. L. Gardner) Chihara consisted of two distinct clades: one comprising samples from Korea and Japan, and the other comprising samples from the Gulf of California. Additional observations of the morphology and anatomy of the specimens agree with the molecular data. On the basis of results, we reinstated Ishige foliacea S. Okamura (considered a synonym of I. sinicola from the Gulf of California) for plants from the northwest Pacific region and designated a specimen in the Yendo Herbarium (SAP) as the lectotype. I. foliacea is distinguished by large (up to 20 cm) and wide (up to 20 mm) thalli, with a cortex of 4–7 cells, and a medulla composed of long, tangled hyphal cells. Both cox3 and rbcL sequence data strongly support the sister‐area relationship between the northwest Pacific region and the Gulf of California. A likely explanation for this pattern would be the presence of a species ancestral to contemporary species of Ishige in both regions during the paleogeological period, with descendants later isolated by distance.  相似文献   

13.
The objectives of this study were to determine rDNA sequences of the most common Dinophysis species in Scandinavian waters and to resolve their phylogenetic relationships within the genus and to other dinoflagellates. A third aim was to examine the intraspecific variation in D. acuminata and D. norvegica, because these two species are highly variable in both morphology and toxicity. We obtained nucleotide sequences of coding (small subunit [SSU], partial large subunit [LSU], 5.8S) and noncoding (internal transcribed spacer [ITS]1, ITS2) parts of the rRNA operon by PCR amplification of one or two Dinophysis cells isolated from natural water samples. The three photosynthetic species D. acuminata, D. acuta, and D. norvegica differed in only 5 to 8 of 1802 base pairs (bp) within the SSU rRNA gene. The nonphotosynthetic D. rotundata (synonym Phalacroma rotundatum[Claparède et Lachmann] Kofoid et Michener), however, differed in approximately 55 bp compared with the three photosynthetic species. In the D1 and D2 domains of LSU rDNA, the phototrophic species differed among themselves by 3 to 12 of 733 bp, whereas they differed from D. rotundata by more than 100 bp. This supports the distinction between Dinophysis and Phalacroma. In the phylogenetic analyses based on SSU rDNA, all Dinophysis species were grouped into a common clade in which D. rotundata diverged first. The results indicate an early divergence of Dinophysis within the Dinophyta. The LSU phylogenetic analyses, including 4 new and 11 Dinophysis sequences from EMBL, identified two major clades within the phototrophic species. Little or no intraspecific genetic variation was found in the ITS1–ITS2 region of single cells of D. norvegica and D. acuminata from Norway, but the delineation between these two species was not always clear.  相似文献   

14.
Species currently classified within the cyanobacterial genus Microcoleus were determined to fall into two distinct clades in a 16S rDNA phylogeny, one containing taxa within the Oscillatoriaceae, the other containing taxa within the Phormidiaceae. The two lineages were confirmed in an analysis of the 16S–23S internal transcribed spacer (ITS) region sequences and secondary structures. The type species for Microcoleus is M. vaginatus Gomont, and this taxon belongs in the Oscillatoriaceae. Consequently, Microcoleus taxa in the Phormidiaceae must be placed in separate genera, and we propose the new genus Coleofasciculus to contain marine taxa currently placed in Microcoleus. The type species for Coleofasciculus is the well‐studied and widespread marine mat‐forming species Microcoleus chthonoplastes (Mert.) Zanardini ex Gomont. Other characters separating the two families include type of cell division and thylakoid structure.  相似文献   

15.
16.
Taxonomy of the brown algal genus Dictyota has a long and troubled history. Our inability to distinguish morphological plasticity from fixed diagnostic traits that separate the various species has severely confounded species delineation. From continental Europe, more than 60 species and intraspecific taxa have been described over the last two centuries. Using a molecular approach, we addressed the diversity of the genus in European waters and made necessary taxonomic changes. A densely sampled DNA data set demonstrated the presence of six evolutionarily significant units (ESUs): Dictyota dichotoma (Huds.) J. V. Lamour., D. fasciola (Roth) J. V. Lamour., D. implexa J. V. Lamour., D. mediterranea (Schiffn.) G. Furnari, D. spiralis Mont., and the newly described D. cyanoloma sp. nov., which was previously reported as D. ciliolata from the Mediterranean Sea. Species distributions, based on DNA‐confirmed occurrence records, indicate that all species are geographically confined to the NE Atlantic Ocean with the exception of D. dichotoma and D. implexa, which also occur in South Africa and Bermuda, respectively. To investigate potential hybridization between D. dichotoma and D. implexa, which were previously shown to be sexually compatible in culture, we compiled and analyzed sets of mitochondrial, plastid, and nuclear markers to detect putative hybrids or introgression in natural populations. Failure to detect natural hybrids indicates that effective pre‐ and postzygotic isolation mechanisms are at play in natural populations and supports the by‐product hypothesis of reproductive isolation.  相似文献   

17.
A previously unknown species of kelp was collected on Kagamil Island, Aleutian Islands. The species can be easily distinguished from any known laminarialean alga: the erect sporophytic thallus is composed of a thin lanceolate blade attaining ~2 m in height and ~0.50 m in width, without midrib, and the edge of the blade at the transition zone is thickened to form a V‐shape; the stipe is solid and flattened, slightly translucent, attaining ~1 m in length; the holdfast is semidiscoidal and up to 0.15 m in diameter. Anatomically, the blade has the typical trumpet‐shaped hyphae characteristic of the Chordaceae and derived foliose laminarialean species (i.e., Alariaceae/Laminariaceae/Lessoniaceae). No hair pits or mucilaginous structures were observed on the blade or stipe. No fertile sporophytes were collected, but abundant juvenile sporophytes were observed in the field. In the molecular phylogenetic analyses using chloroplast rbcL gene, nuclear ITS1‐5.8S‐ITS2 rDNA, and mitochondria nad6 DNA sequences, the new species (Aureophycus aleuticus gen. et sp. nov.) showed a closer relationship with Alariaceae of conventional taxonomy, or the “Group 1” clade of Lane et al. (2006) including Alaria and related taxa than with other groups, although the species was not clearly included in the group. Aureophycus may be a key species in elucidating the evolution of the Alariaceae within the Laminariales. Because of the lack of information on reproductive organs and insufficient resolution of the molecular analyses, we refrain from assigning the new species to a family, but we place the new species in a new genus in the Laminariales.  相似文献   

18.
19.
Sargassum muticum (Yendo) Fensholt is one of the most well‐known invasive species in the world. There have, however, been few genetic investigations on both its introduced and native populations. There are also some questions about the taxonomic status of this species. This study is the first to assess the genetic diversity of S. muticum on a global scale, by utilizing one marker each from the extranuclear genomes, namely, plastidial RUBISCO and mitochondrial TrnW_I spacers, as well as the nuclear internal transcribed spacer 2 (ITS2). Based on the markers investigated, both the invasive as well as the native populations of this species appeared very homogenous, when compared with other invasive and brown macroalgae. No variation in ITS2 and RUBISCO spacer was revealed in S. muticum populations, including those from its native ranges in Asia and the introduced ranges in Europe and North America. Two TrnW_I spacer haplotypes with a fixed two‐nucleotide difference were found between the populations of eastern Japan and the other 15 populations examined. This study confirms that there is no cryptic diversity in the introduced range of this species. All the materials collected globally are indeed S. muticum. Results depicting the distribution range of the two TrnW_I spacer haplotypes also support the earlier suggestion that the source of the introduced S. muticum populations is most likely western and central Japan (Seto Inland Sea), where the germlings of S. muticum were likely to have been transported with the Pacific oysters previously introduced for farming in Canada, UK, and France in earlier years.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号