共查询到20条相似文献,搜索用时 31 毫秒
1.
A beta-tubulin mutation selectively uncouples nuclear division and cytokinesis in Tetrahymena thermophila 下载免费PDF全文
The ciliated protozoan Tetrahymena thermophila contains two distinct nuclei within a single cell-the mitotic micronucleus and the amitotic macronucleus. Although microtubules are required for proper division of both nuclei, macronuclear chromosomes lack centromeres and the role of microtubules in macronuclear division has not been established. Here we describe nuclear division defects in cells expressing a mutant beta-tubulin allele that confers hypersensitivity to the microtubule-stabilizing drug paclitaxel. Macronuclear division is profoundly affected by the btu1-1 (K350M) mutation, producing cells with widely variable DNA contents, including cells that lack macronuclei entirely. Protein expressed by the btu1-1 allele is dominant over wild-type protein expressed by the BTU2 locus. Normal macronuclear division is restored when the btu1-1 allele is inactivated by targeted disruption or expressed as a truncated protein. Immunofluorescence studies reveal elongated microtubular structures that surround macronuclei that fail to migrate to the cleavage furrows. In contrast, other cytoplasmic microtubule-dependent processes, such as cytokinesis, cortical patterning, and oral apparatus assembly, appear to be unaffected in the mutant. Micronuclear division is also perturbed in the K350M mutant, producing nuclei with elongated early-anaphase spindle configurations that persist well after the initiation of cytokinesis. The K350M mutation affects tubulin dynamics, as the macronuclear division defect is exacerbated by three treatments that promote microtubule polymerization: (i) elevated temperatures, (ii) sublethal concentrations of paclitaxel, and (iii) high concentrations of dimethyl sulfoxide. Inhibition of phosphatidylinositol 3-kinase (PI 3-kinase) with 3-methyladenine or wortmannin also induces amacronucleate cell formation in a btu1-1-dependent manner. Conversely, the myosin light chain kinase inhibitor ML-7 has no effect on nuclear division in the btu1-1 mutant strain. These findings provide new insights into microtubule dynamics and link the evolutionarily conserved PI 3-kinase signaling pathway to nuclear migration and/or division in Tetrahymena. 相似文献
2.
Xia L Hai B Gao Y Burnette D Thazhath R Duan J Bré MH Levilliers N Gorovsky MA Gaertig J 《The Journal of cell biology》2000,149(5):1097-1106
We analyzed the role of tubulin polyglycylation in Tetrahymena thermophila using in vivo mutagenesis and immunochemical analysis with modification-specific antibodies. Three and five polyglycylation sites were identified at glutamic acids near the COOH termini of alpha- and beta-tubulin, respectively. Mutants lacking all polyglycylation sites on alpha-tubulin have normal phenotype, whereas similar sites on beta-tubulin are essential. A viable mutant with three mutated sites in beta-tubulin showed reduced tubulin glycylation, slow growth and motility, and defects in cytokinesis. Cells in which all five polyglycylation sites on beta-tubulin were mutated were viable if they were cotransformed with an alpha-tubulin gene whose COOH terminus was replaced by the wild-type COOH terminus of beta-tubulin. In this double mutant, beta-tubulin lacked detectable polyglycylation, while the alpha-beta tubulin chimera was hyperglycylated compared with alpha-tubulin in wild-type cells. Thus, the essential function of polyglycylation of the COOH terminus of beta-tubulin can be transferred to alpha-tubulin, indicating it is the total amount of polyglycylation on both alpha- and beta-tubulin that is essential for survival. 相似文献
3.
Nilsson JR 《The Journal of eukaryotic microbiology》1999,46(1):24-33
Sodium orthovanadate at 0.1-5.0 mM affected cell proliferation of Tetrahymena in a dose-dependent manner. At 1 h the cell increment was 76-12% of the control (100%), but after lag periods in 1-5 mM the growth rate remained at 76% of control in 0.1 mM vanadate and at 64-61% of control in 0.2-5.0 mM vanadate. Endocytosis was affected in both a time- and dose-dependent manner; an increasing number of cells did not form vacuoles. Cell motility increased initially in 0.1 mM vanadate but decreased later as it did in 0.5-2.0 mM vanadate where the proportion of immobile cells increased with time. Cell divisions occurred at all concentrations but macronuclear elongation was disturbed and subsequent cytokinesis resulted in daughter cells containing the entire G2 macronucleus, a large or small portion of it, or no nucleus at all. Moreover, odd cell shapes appeared with time. The size of the cell and nucleus increased but there was great variation with disturbed cytoplasm/nucleus ratios. Treated cells had dilated rough endoplasmic reticulum that included dense material, presumed to be vanadate, which was not seen in control cells. Scant amounts of dense material were found in dense granules, small vacuoles, and abundantly in contractile vacuoles. It is argued that interference with proper microtubular function is the main effect of vanadate. 相似文献
4.
5.
Tetrahymena contains a micronucleus and a macronucleus. The micronucleus divides with typical mitosis, while the macronucleus divides amitotically. Although the mechanism responsible for macronuclear division was previously unknown, we clarified the organization of microtubules during macronuclear division. The macronuclear microtubules dynamically changed their distribution in an organized way throughout the macronuclear division. The macronuclear microtubules and the cytoplasmic microtubules cooperatively carried out the macronuclear division. When the micronuclear division was finished, p85 appeared at the presumptive division plane prior to the cytokinesis. The p85 directly interacted with calmodulin in a Ca(2+)-dependent manner, and p85 and CaM colocalized to the division furrow during cytokinesis. Moreover, the Ca(2+)/CaM inhibitor, W7, inhibited the direct interaction between p85 and CaM, the localization of both proteins to the division plane, and the formation of the division furrow. Thus, Ca(2+)/CaM and p85 have important roles in initiation and progression of cytokinesis in Tetrahymena. 相似文献
6.
Centrin, an EF hand Ca(2+) binding protein, has been cloned in Tetrahymena thermophila. It is a 167 amino acid protein of 19.4 kDa with a unique N-terminal region, coded by a single gene containing an 85-base pair intron. It has > 80% homology to other centrins and high homology to Tetrahymena EF hand proteins calmodulin, TCBP23, and TCBP25. Specific cellular localizations of the closely related Tetrahymena EF hand proteins are different from centrin. Centrin is localized to basal bodies, cortical fibers in oral apparatus and ciliary rootlets, the apical filament ring and to inner arm (14S) dynein (IAD) along the ciliary axoneme. The function of centrin in Ca(2+) control of IAD activity was explored using in vitro microtubule (MT) motility assays. Ca(2+) or the Ca(2+)-mimicking peptide CALP1, which binds EF hand proteins in the absence of Ca(2+), increased MT sliding velocity. Antibodies to centrin abrogated this increase. This is the first demonstration of a specific centrin function associated with axonemal dynein. It suggests that centrin is a key regulatory protein for Tetrahymena axonemal Ca(2+) responses, including ciliary reversal or chemotaxis. 相似文献
7.
The ciliary axoneme is the minimal structure responsible for Ca2+-dependent modulation of ciliary movement. We demonstrated that, in Tetrahymena ciliary axonemes, beta-tubulin was exclusively phosphorylated by an endogenous Ca2+/calmodulin-dependent protein kinase(s). The phosphorylation of beta-tubulin also occurred in the outerdoublet microtubule fraction, suggesting that the responsible enzyme(s) was tightly associated with outerciliary motility, Ca2+-dependent phosphorylation of beta-tubulin was also found to occur exclusively. From these results, it is inferable that the phosphorylation of beta-tubulin is involved in Ca2+-dependent ciliary reversal. 相似文献
8.
9.
10.
Splayed Tetrahymena cilia. A system for analyzing sliding and axonemal spoke arrangements 总被引:6,自引:4,他引:2 下载免费PDF全文
《The Journal of cell biology》1976,71(2):589-605
This study makes use of a procedure designed to illustrate, without serial section analysis, the three-dimensional changes in the ciliary axoneme produced by microtubule sliding, and to confirm essential features of the sliding microtubule hypothesis of ciliary movement. Cilia, isolated from Tetrahymena pyriformis by the dibucaine procedure, are attached to polylysine substratum, and treated with Triton X-100. Critical point drying maintains three-dimensional structure without embedding. The detergent removes the membrane and many axonemes unroll, always in an organized fashion so that doublets follow one another in sequence, according to the enantiomorphic form of the cilium. The central pair of microtubules fall to the side as a unit. The parallel doublet microtubules retain relative longitudinal positions in part by interdoublet or nexin links. Spoke organization and tip patterns are preserved in the opened axonemes. We generalize the work of Warner and Satir (Warner, F. D., and P. Satir, 1976. J. Cell Biol. 63:35-63) to show that spoke group arrangements are maintained for all doublets in straight regions, while systematic displacements occur in bent regions. The conclusion that local contraction of microtubles is absent in the axoneme is strengthened, and direct graphic demonstrations of sliding at the ciliary tip are shown. A morphogenetic numbering scheme is presented which results in a quantitative fit of the tip images to the images predicated by the equation for doublet sliding, and which makes possible new comparisons of structural parameters between axonemes and with cilia of other organisms. 相似文献
11.
Distinct localization of a beta-tubulin epitope in the Tetrahymena thermophila and Paramecium caudatum cortex 总被引:1,自引:0,他引:1
Summary. Many of the highly organized microtubular arrangements in ciliates are located in the cortical area containing membrane vesicles
and vacuoles. In Tetrahymena thermophila and Paramecium caudatum, immunofluorescence microscopy with the monoclonal antibody TU-06, directed against β-tubulin, revealed distinct staining
of this cortical region alone, while the cilia and other microtubular structures were unstained. The specificity of the antibody
was confirmed by immunoblotting and by preabsorption of the antibody with purified tubulin. Double-label immunofluorescence
with antibodies against γ-tubulin, detyrosinated α-tubulin, and centrin showed that the TU-06 epitope is localized outside
the basal body region. This was also confirmed by immunogold electron microscopy of thin sections. Proteolytic digestion of
porcine brain β-tubulin combined with a peptide scan of immobilized, overlapping peptides disclosed that the epitope was in
the β-tubulin region β81–95, a region which is phylogenetically highly conserved. As known posttranslational modifications
of β-tubulin are located outside this area, the observed staining pattern cannot be interpreted as evidence of subcellular
sequestration of modified tubulin. The limited distribution of the epitope could rather reflect the dependence of TU-06 epitope
exposition on conformations of tubulin molecules in microtubule arrangements or on differential masking by interacting proteins.
Correspondence and reprints: Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech
Republic. 相似文献
12.
S Audebert D White J Cosson P Huitorel B Eddé C Gagnon 《European journal of biochemistry》1999,261(1):48-56
Flagellar motility is the result of specific interactions between axonemal microtubular proteins and the dynein motors. Tubulin, the main component of microtubule, is a very polymorphic protein resulting from the expression of several isogenes and from the existence of various post-translational modifications. In order to characterize tubulin isoforms and tubulin domains that are important for flagellar movement, we prepared monoclonal antibodies against axonemal proteins from whole sea-urchin sperm tails. The monoclonal antibodies obtained were screened for their potency to inhibit demembranated-reactivated sperm models and for their monospecific immunoreactivity on immunoblot. Among the different antibodies we obtained, D66 reacted specifically with a subset of beta-tubulin isoforms. Limited proteolysis, HPLC, peptide sequencing, mass spectroscopy and immunoblotting experiments indicated that D66 recognized an epitope localized in the primary sequence Gln423-Glu435 of the C-terminal domain of Lytechinus pictus beta2-tubulin, and that this sequence belongs to class IVb. The use of synthetic peptides and immunoblotting analysis further narrowed the amino acids important for antibody recognition to Asp427-Glu432. Because the primary effect of this antibody on sperm motility is to decrease the flagellar beat frequency, we suggest that this sequence is involved in the tubulin-dynein head interaction. 相似文献
13.
Limited proteolysis of tubulin by alpha-chymotrypsin cleaved the beta-subunit preferentially at Tyr 281, generating primarily 35 kD and 17 kD fragments which were located in the amino terminal and the carboxy terminal regions, respectively. A small amount of a 19 kD fragment from the C-terminal end was also produced. Alpha-Chymotrypsin-treated tubulin retained the ability to exchange GTP and covalently incorporate nucleotide by direct photoaffinity labeling. SDS-PAGE and autoradiography analysis of the [alpha-32P] GTP-labeled alpha-CT-treated tubulin showed that the 35 kD fragment was almost exclusively labeled, indicating that the exchangeable GTP binding domain resides in the amino terminal region of the beta-subunit. 相似文献
14.
K Nakamura E Masuyama S Wada M Okuno 《Journal of biochemical and biophysical methods》1990,21(3):237-245
The cationic dye, Stains-all, is known to stain brain beta-tubulin blue and alpha-tubulin red (Serrano, L. et al. (1986) J. Biochem. Biophys. Methods 12, 281-287; Serrano, L. et al. (1989) Biochem. Int., 19, 235-246). The present experiments show that this stain can also be applied to detect beta-tubulin in axonemal tubulins from various sources such as cilia of protozoa, sperm flagella of echinoderm, and sperm flagella of mollusc. Furthermore, these experiments showed that it selectively stains isoforms of axonemal beta-tubulin blue following isoelectric focusing, whereas those of alpha-tubulin are stained red. These results indicate that Stains-all staining is a useful tool for electrophoretic analysis of axonemal tubulins. 相似文献
15.
Expression of the actin-binding protein profilin was disrupted in the ciliate Tetrahymena thermophila by an antisense ribosome method. In cells with the antisense disruption no profilin protein was detected. Cultures of cells with the antisense disruption could be maintained, indicating that profilin was not essential for cytokinesis or vegetative growth. Disruption of the expression of profilin resulted in many cells that were large and abnormally shaped. Formation of multiple micronuclei, which divide mitotically, was observed in cells with a single macronucleus, indicating a defect in early cytokinesis. Some cells with the antisense disruption contained multiple macronuclei, which in Tetrahymena may indicate a function late in cytokinesis. The lack of profilin also affected cytokinesis in the cells that could divide. Normal-sized and normal-shaped cells with the antisense disruption took significantly longer to divide than control cell types. The profilin disruption revealed two new processes in which profilin functions. In cells lacking profilin, micronuclei were not positioned at their normal site on the surface of the macronucleus and phagocytosis was defective. The defect in phagocytosis appeared to be due to disruption of the formation of oral apparatuses (stomatogenesis) and a possible failure in the internalization of phagocytic vacuoles. 相似文献
16.
17.
Green fluorescent protein (GFP)-tagged actin was used to investigate the distribution and function of actin in Tetrahymena. A strain that expresses both GFP-actin and endogenous actin was developed by transformation of Tetrahymena thermophila with a ribosomal DNA-based replicative vector. Confocal microscopy of living cells and immunogold electron microscopy confirmed localization of GFP-actin to basal bodies and the contractile ring. Incorporation of the fusion protein into these and other actin-related structures correlated with severe impairment of macronuclear elongation and cytokinesis. At 30 degrees C macronuclear elongation failed to occur in 25% of the transformants despite completion of micronuclear division. At 20 degrees C macronuclear elongation failed to occur in 2% of the population. Arrest of cytokinesis coincided with failure of macronuclear elongation. Arrested cells developed into homopolar doublets with two sets of oral structures. This study indicates a requirement for actin in nuclear elongation and cytokinesis. Although GFP-actin can interfere with the functioning of actin-containing structures, the GFP-actin transformant strain can be used to monitor actin distribution and dynamics and is therefore an important new tool for further studies of Tetrahymena actin. 相似文献
18.
Spokevicius AV Southerton SG MacMillan CP Qiu D Gan S Tibbits JF Moran GF Bossinger G 《The Plant journal : for cell and molecular biology》2007,51(4):717-726
Cellulose microfibrils are the major structural component of plant secondary cell walls. Their arrangement in plant primary cell walls, and its consequent influence on cell expansion and cellular morphology, is directed by cortical microtubules; cylindrical protein filaments composed of heterodimers of alpha- and beta-tubulin. In secondary cell walls of woody plant stems the orientation of cellulose microfibrils influences the strength and flexibility of wood, providing the physical support that has been instrumental in vascular plant colonization of the troposphere. Here we show that a Eucalyptus grandisbeta-tubulin gene (EgrTUB1) is involved in determining the orientation of cellulose microfibrils in plant secondary fibre cell walls. This finding is based on RNA expression studies in mature trees, where we identified and isolated EgrTUB1 as a candidate for association with wood-fibre formation, and on the analysis of somatically derived transgenic wood sectors in Eucalyptus. We show that cellulose microfibril angle (MFA) is correlated with EgrTUB1 expression, and that MFA was significantly altered as a consequence of stable transformation with EgrTUB1. Our findings present an important step towards the production of fibres with altered tensile strength, stiffness and elastic properties, and shed light on one of the molecular mechanisms that has enabled trees to dominate terrestrial ecosystems. 相似文献
19.
The contractile ring is essential for cytokinesis in most fungal and animal cells. In fission yeast, cytokinesis nodes are precursors of the contractile ring and mark the future cleavage site. However, their assembly and architecture have not been well described. We found that nodes are assembled stoichiometrically in a hierarchical order with two modules linked by the positional marker anillin Mid1. Mid1 first recruits Cdc4 and IQGAP Rng2 to form module I. Rng2 subsequently recruits the myosin-II subunits Myo2 and Rlc1. Mid1 then independently recruits the F-BAR protein Cdc15 to form module II. Mid1, Rng2, Cdc4, and Cdc15 are stable node components that accumulate close to the plasma membrane. Both modules recruit the formin Cdc12 to nucleate actin filaments. Myo2 heads point into the cell interior, where they efficiently capture actin filaments to condense nodes into the contractile ring. Collectively, our work characterizing the assembly and architecture of precursor nodes defines important steps and molecular players for contractile ring assembly. 相似文献
20.
Tubulin binds guanine nucleotides with high affinity and specificity. GTP, an allosteric effector of microtubule assembly, requires Mg2+ for its interaction with beta-tubulin and binds as the MgGTP complex. In contrast, GDP binding does not require Mg2+. The structural basis for this difference is not understood but may be of fundamental importance for microtubule assembly. We investigated the interaction of beta-tubulin with guanine nucleotides using site-directed mutagenesis. Acidic amino acid residues have been shown to interact with nucleotide in numerous nucleotide-binding proteins. In this study, we mutated seven highly conserved aspartic acid residues and one highly conserved glutamic acid residue in the putative GTP-binding domain of beta-tubulin (N-terminal 300 amino acids) to asparagine and glutamine, respectively. The mutants were synthesized in vitro using rabbit reticulocyte lysates, and their affinities for nucleotide determined by an h.p.l.c.-based assay. Our results indicate that the mutations can be placed in six separate categories on the basis of their effects on nucleotide binding. These categories range from having no effect on nucleotide binding to a mutation that apparently abolishes nucleotide binding. One mutation at Asp224 reduced the affinity of beta-tubulin for GTP in the presence but not in the absence of Mg2+. The specific effect of this mutation on nucleotide binding is consistent with an interaction of this amino acid with the Mg2+ moiety of MgGTP. This residue is in a region sharing sequence homology with the putative Mg2+ site in myosin and other ATP-binding proteins. As a result, tubulin belongs to a distinct class of GTP-binding proteins which may be evolutionarily related to the ATP-binding proteins. 相似文献