共查询到20条相似文献,搜索用时 15 毫秒
1.
Acampomelic campomelic dysplasia is a rare variant of campomelic dysplasia syndrome affecting bone and connecting tissue. This syndrome is implicated by the absence of bowed limbs. Affected children have a characteristically smooth facial profile and are born with respiratory distress. A 15 day old Turkish boy presented with a small flat face, dolicocephalic head, proptotic eyes, short neck, low-set ears and a small thoracic cage. Limbs were mesomelically short and bilateral talipes equinovarus was present. The radiological findings indicated hypoplastic scapulae, narrow ribs, small thorax, thin claviculaes, and small iliac wings. Angulation of the femur, tibia and humerus was not observed. Our case, suited to acampomelic campomelic dysplasia, is discussed with differential diagnosis and compared with previously reported cases of the syndrome. 相似文献
2.
K. Uchida P. Koopman A. Mita S. Wakana E. Wright Y. Kikkawa H. Yonekawa K. Moriwaki T. Shiroishi 《Mammalian genome》1996,7(7):481-485
The Sry-related gene Sox9 has been proposed as the gene responsible for the mouse skeletal mutant Tail-short (Ts), on the basis of its expression in skeletogenic mesenchymal condensations in the mouse embryo and its chromosomal location in the region of Ts on distal Chromosome (Chr) 11. We present here detailed mapping of Ts locus relative to the Sox9, using an intersubspecific cross. Among 521 backcross progeny, 16 recombinants were detected between Sox9 and Ts, suggesting a separation of 3.5 ± 0.01 cM, and excluding Sox9 as a candidate for Ts. A further nine recombinants were detected between Ts and the polycomb-like gene M33, suggesting that these loci are separated by 1.8 ± 0.011 cM. Six microsatellite markers were co-localized to the Ts locus, providing reagents for positional cloning of Ts. Received: 13 December 1995 / Accepted: 3 March 1996 相似文献
3.
4.
Campomelic dysplasia (CD; MIM 114290), an autosomal dominant skeletal malformation syndrome with XY sex reversal, is caused by heterozygous de novo mutations in and around the SOX9 gene on 17q. We report a patient with typical signs of CD, including sex reversal, who was, surprisingly, homozygous for the nonsense mutation Y440X. Since neither parent carried the Y440X mutation, possible mechanisms explaining the homozygous situation were a de novo mutation followed by uniparental isodisomy, somatic crossing over, or gene conversion. As the patient was heterozygous for six microsatellite markers flanking SOX9, uniparental isodisomy and somatic crossing over were excluded. Analysis of intragenic single-nucleotide polymorphisms suggested that the homozygous mutation arose by a mitotic gene conversion event involving exchange of at least 440 nucleotides and at most 2,208 nucleotides between a de novo mutant maternal allele and a wild-type paternal allele. Analysis of cloned alleles showed that homozygous mutant cells constituted about 80% of the leukocyte cell population of the patient, whereas about 20% were heterozygous mutant cells. Heterozygous Y440X mutations, previously described in three CD cases, have been identified in seven additional cases, thus constituting the most frequent recurrent mutations in SOX9. These patients frequently have a milder phenotype with longer survival, possibly because of the retention of some transactivation activity of the mutant protein on SOX9 target genes, as shown by cell transfection experiments. The fact that the patient survived for 3 months may thus be explained by homozygosity for a hypomorphic rather than a complete loss-of-function allele, in combination with somatic mosaicism. This is, to our knowledge, the first report of mitotic gene conversion of a wild-type allele by a de novo mutant allele in humans. 相似文献
5.
Chaboissier MC Kobayashi A Vidal VI Lützkendorf S van de Kant HJ Wegner M de Rooij DG Behringer RR Schedl A 《Development (Cambridge, England)》2004,131(9):1891-1901
Sex determination in mammals directs an initially bipotential gonad to differentiate into either a testis or an ovary. This decision is triggered by the expression of the sex-determining gene Sry, which leads to the activation of male-specific genes including the HMG-box containing gene Sox9. From transgenic studies in mice it is clear that Sox9 is sufficient to induce testis formation. However, there is no direct confirmation for an essential role for Sox9 in testis determination. The studies presented here are the first experimental proof for an essential role for Sox9 in mediating a switch from the ovarian pathway to the testicular pathway. Using conditional gene targeting, we show that homozygous deletion of Sox9 in XY gonads interferes with sex cord development and the activation of the male-specific markers Mis and P450scc, and leads to the expression of the female-specific markers Bmp2 and follistatin. Moreover, using a tissue specific knock-out approach, we show that Sox9 is involved in Sertoli cell differentiation, the activation of Mis and Sox8, and the inactivation of Sry. Finally, double knock-out analyses suggest that Sox8 reinforces Sox9 function in testis differentiation of mice. 相似文献
6.
A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal 总被引:11,自引:0,他引:11
Argentaro A Sim H Kelly S Preiss S Clayton A Jans DA Harley VR 《The Journal of biological chemistry》2003,278(36):33839-33847
7.
8.
Homozygous inactivation of Sox9 causes complete XY sex reversal in mice 总被引:10,自引:0,他引:10
Barrionuevo F Bagheri-Fam S Klattig J Kist R Taketo MM Englert C Scherer G 《Biology of reproduction》2006,74(1):195-201
In the presence of the Y-chromosomal gene Sry, the bipotential mouse gonads develop as testes rather than as ovaries. The autosomal gene Sox9, a likely and possibly direct Sry target, can induce testis development in the absence of Sry. Sox9 is thus sufficient but not necessarily essential for testis induction. Mutational inactivation of one allele of SOX9/Sox9 causes sex reversal in humans but not in mice. Because Sox9(-/-) embryos die around Embryonic Day 11.5 (E11.5) at the onset of testicular morphogenesis, differentiation of the mutant XY gonad can be analyzed only ex vivo in organ culture. We have therefore conditionally inactivated both Sox9 alleles in the gonadal anlagen using the CRE/loxP recombination system, whereby CRE recombinase is under control of the cytokeratin 19 promoter. Analysis of resulting Sox9(-/-) XY gonads up to E15.5 reveals immediate, complete sex reversal, as shown by expression of the early ovary-specific markers Wnt4 and Foxl2 and by lack of testis cord and Leydig cell formation. Sry expression in mutant XY gonads indicates that downregulation of Wnt4 and Foxl2 is dependent on Sox9 rather than on Sry. Our results provide in vivo proof that, in contrast to the situation in humans, complete XY sex reversal in mice requires inactivation of both Sox9 alleles and that Sox9 is essential for testogenesis in mice. 相似文献
9.
The Hus1 cell cycle checkpoint protein plays a central role in genome maintenance by mediating cellular responses to DNA damage and replication stress. Targeted deletion of mouse Hus1 results in spontaneous chromosomal abnormalities and embryonic lethality. To study the physiological impact of Hus1 deficiency in adult mice, we generated a conditional Hus1 allele, Hus1(flox), in which exons two and three are flanked by loxP sites. Cre-mediated excision of the loxP-flanked region produces Hus1(Delta2,3), which is capable of encoding only 19 of 281 Hus1 amino acids. Germline homozygosity for Hus1(Delta2,3) resulted in mid-gestational embryonic lethality that was indistinguishable from that caused by an established null allele, Hus1(Delta1n). Hus1 was inactivated in adult mice using a transgenic strain in which Cre is sporadically expressed in a variety of tissues from the Hsp70-1 promoter. Conditional Hus1 knockout mice were produced at unexpectedly low frequency and, unlike control animals, demonstrated limited inactivation of the conditional allele, suggesting that Hus1-deficient cells were at a strong selective disadvantage in adult animals. However, viable conditional Hus1 knockout mice consistently showed the greatest degree of Hus1 inactivation specifically in lung and mammary gland, highlighting varying requirements for Hus1 in different tissues. The novel tools described here hold promise for elucidating how the Hus1-dependent checkpoint mechanism contributes to chromosomal stability, DNA damage responses, and tumor suppression in adult mice. 相似文献
10.
11.
12.
13.
14.
15.
Summary We have studied a stillborn infant who had the clinical and radiographic characteristics of campomelic dysplasia. External and internal genitalia were those of a normal female, except for slight enlargement of the clitoris. Microscopic examination of the ovaries revealed some areas resembling immature dysgenetic testicular tissue. Karyotypes from lymphocyte and fibroblast cultures were 46,XY with a structurally normal Y chromosome and no evidence of mosaicism. H-Y antigen was not detected on the fibroblasts in repeated assays using Raji cells as target cells after absorption. The sexreversal (chromosomal malephenotypic female) previously noted in patients with autosomal recessive campomelic dysplasia thus may be mediated through lack of detectable H-Y antigen on the cell surface. It appears that the mutation leading to campomelic dysplasia interferes with normal H-Y antigen expression. 相似文献
16.
17.
18.
Flenniken AM Osborne LR Anderson N Ciliberti N Fleming C Gittens JE Gong XQ Kelsey LB Lounsbury C Moreno L Nieman BJ Peterson K Qu D Roscoe W Shao Q Tong D Veitch GI Voronina I Vukobradovic I Wood GA Zhu Y Zirngibl RA Aubin JE Bai D Bruneau BG Grynpas M Henderson JE Henkelman RM McKerlie C Sled JG Stanford WL Laird DW Kidder GM Adamson SL Rossant J 《Development (Cambridge, England)》2005,132(19):4375-4386
Oculodentodigital dysplasia (ODDD) is an autosomal dominant disorder characterized by pleiotropic developmental anomalies of the limbs, teeth, face and eyes that was shown recently to be caused by mutations in the gap junction protein alpha 1 gene (GJA1), encoding connexin 43 (Cx43). In the course of performing an N-ethyl-N-nitrosourea mutagenesis screen, we identified a dominant mouse mutation that exhibits many classic symptoms of ODDD, including syndactyly, enamel hypoplasia, craniofacial anomalies and cardiac dysfunction. Positional cloning revealed that these mice carry a point mutation in Gja1 leading to the substitution of a highly conserved amino acid (G60S) in Cx43. In vivo and in vitro studies revealed that the mutant Cx43 protein acts in a dominant-negative fashion to disrupt gap junction assembly and function. In addition to the classic features of ODDD, these mutant mice also showed decreased bone mass and mechanical strength, as well as altered hematopoietic stem cell and progenitor populations. Thus, these mice represent an experimental model with which to explore the clinical manifestations of ODDD and to evaluate potential intervention strategies. 相似文献
19.
20.
Cha KB Karolyi IJ Hunt A Wenglikowski AM Wilkinson JE Dolan DF Dootz G Finnegan AA Seasholtz AF Hankenson KD Siracusa LD Camper SA 《Genomics》2004,83(6):951-960
In mice and humans, growth insufficiency and male infertility are common disorders that are genetically and phenotypically complex. We describe a spontaneously arising mouse mutant, chagun, that is affected by both dwarfism and male infertility. Dwarfism disproportionately affects long bones and is characterized by a defect in the proliferative zone of chondrocytes in the growth plate. Gonads of mutant males are small, with apparent germ cell loss and no evidence of mature sperm. The locus responsible for chagun is recessive and maps to distal chromosome 9, in a region homologous to human chromosome 3. This location is consistent with chagun defining a novel locus. Identification of the mutant gene will uncover the basis for another type of skeletal dysplasia and male infertility. 相似文献