首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dibutyryl cyclic AMP and butyrate inhibited growth of S-20 (cholinergic) and NIE-115 (adrenergic) neuroblastoma clones. Both these drugs resulted in a parallel increase of choline acetyltransferase and ATP-citrate lyase activities in S-20 neuroblastoma cells. On the other hand, the increase in tyrosine hydroxylase activity in NIE-115 caused by these drugs was not accompanied by a significant change in ATP-citrate lyase activity. Both dibutyryl cyclic AMP and butyrate caused a decrease in fatty acid synthetase activity in both cell lines. The activities of pyruvate dehydrogenase, citrate synthase, choline acetyltransferase, and lactate dehydrogenase in both S-20 and NIE-115 cells were not significantly influenced by the drugs. ATP-citrate lyases from S-20 and NIE-115 had similar kinetic and immunological properties, and their subunits had the same molecular weight as the rat liver enzyme. These data indicate that the differential regulation of ATP-citrate lyase activity in cholinergic and adrenergic cells does not result from the existence of different molecular forms of the enzyme in these cell lines. They also provide further evidence to support the hypothesis that ATP-citrate lyase activity increases during maturation of normal cholinergic neurons and decreases in noncholinergic cells of the brain.  相似文献   

2.
The activities of choline acetyltransferase and ATP-citrate lyase were significantly correlated (r = 0.995) in fractions of small and large synaptosomes isolated from rat hippocampus and cerebellum. The activities of these two enzymes did not correlate with those of pyruvate dehydrogenase, carnitine acetyltransferase, citrate synthase, acetyl-CoA synthetase, lactate dehydrogenase, or with the rate of high-affinity glutamate uptake in the synaptosomal fractions. The results provide additional evidence linking ATP-citrate lyase to the cholinergic system in the brain.  相似文献   

3.
The activities of ATP-citrate lyase in frog, guinea pig, mouse, rat, and human brain vary from 18 to 30 μmol/h/g of tissue, being several times higher than choline acetyltransferase activity. Activities of pyruvate dehydrogenase and acetyl coenzyme A synthetase in rat brain are 206 and 18.4 μmol/h/g of tissue, respectively. Over 70% of the activities of both choline acetyltransferase and ATP-citrate lyase in secondary fractions are found in synaptosomes. Their preferential localization in synaptosomes and synaptoplasm is supported by RSA values above 2. Acetyl CoA synthetase activity is located mainly in whole brain mitochondria (RSA, 2.33) and its activity in synaptoplasm is low (RSA, 0.25). The activities of pyruvate dehydrogenase, citrate synthase, and carnitine acetyltransferase are present mainly in fractions C and Bp. No pyruvate dehydrogenase activity is found in synaptoplasm. Striatum, cerebral cortex, and cerebellum contain similar activities of pyruvate dehydrogenase, citrate synthase, carnitine acetyltransferase, fatty acid synthetase, and acetyl-CoA hydrolase. Activities of acetyl CoA synthetase, choline acetyltransferase and ATP-citrate lyase in cerebellum are about 10 and 4 times lower, respectively, than in other parts of the brain. These data indicate preferential localization of ATP-citrate lyase in cholinergic nerve endings, and indicate that this enzyme is not a rate limiting step in the synthesis of the acetyl moiety of ACh in brain.  相似文献   

4.
Abstract: Al complexes are known to accumulate in extra- and intracellular compartments of the brain in the course of different encephalopathies. In this study possible effects of Al accumulation in the cytoplasmic compartment on mitochondrial metabolism were investigated. Al, like Ca, inhibited pyruvate utilization as well as citrate and oxoglutarate accumulation by whole brain mitochondria. Potencies of Ca2+total effects were 10–20 times stronger than those of Al. Al decreased mitochondrial acetyl-CoA content in a concentration-dependent manner, along with an equivalent rise of free CoA level, whereas Ca caused loss of both intermediates from mitochondria. In the absence of Pi in the medium, Ca had no effect on mitochondrial metabolism, whereas Al lost its ability to suppress pyruvate utilization and acetyl-CoA content in Ca-free conditions. Verapamil potentiated, whereas ruthenium red reversed, Ca-evoked suppression of mitochondrial metabolism. On the other hand, in Ca-supplemented medium, Al partially overcame the inhibitory influence of verapamil. Accordingly, verapamil increased mitochondrial Ca levels much more strongly than Al. However, Al partially reversed the verapamil-evoked rise of Ca2+total level. These data indicate that Al accumulated in cytoplasm in the form of the Al(PO4)OH complex may inhibit mitochondrial functions by an increase of intramitochondrial [Ca2+]total resulting from the Al-evoked rise of cytoplasmic [Ca2+]free, as well as from inhibitory interference with the verapamil binding site on the Na+/Ca2+ antiporter.  相似文献   

5.
Abstract: As a first step for experiments investigating the presynaptic characteristics of sympathetic fibers grown into the denervated hippocampus, we studied the time course of changes of neurochemical markers in the rat hippocampus, subsequent to aspiration lesions of the fimbria-fornix and the overlying callosal and cortical structures. At various postsurgical delays (1, 2, 8, 24, and 40 weeks), the activity of choline acetyltransferase, the high-affinity synaptosomal uptake of choline and noradrenaline, and the concentrations of noradrenaline, serotonin, and 5-hydroxyindoleacetic acid were measured in a dorsal, an intermediate, and a ventral part of the hippocampus. Levels of all markers were significantly reduced shortly (1–2 weeks) after the lesions. However, whereas the cholinergic (choline uptake and choline acetyltransferase activity) and the serotonergic (concentrations of serotonin and 5-hydroxyindoleacetic acid) markers remained significantly reduced for up to 40 weeks, both noradrenergic markers recovered to near-normal (noradrenaline uptake) or even supranormal (noradrenaline concentration) levels, although with clear-cut differences in the time course and the regional characteristics. The noradrenaline content reached control levels already 8 weeks after lesion surgery and was about two to three times higher 40 weeks later, with the most dramatic effects in the ventral hippocampus. In contrast, high-affinity noradrenaline uptake reached control values only 24 weeks after lesion and exceeded them only in the ventral hippocampus 40 weeks after surgery. It is concluded (a) that hippocampal noradrenaline concentration is a more sensitive marker for sympathetic sprouting than high-affinity noradrenaline uptake and (b) that functional in vitro studies on hippocampal sympathetic ingrowth appear to fit optimal conditions in the ventral hippocampus at a delay of at least 40 weeks after surgery.  相似文献   

6.
Postnatal Development of Cholinergic Enzymes and Receptors in Mouse Brain   总被引:12,自引:0,他引:12  
The developmental profiles for the cholinergic enzymes acetylcholinesterase and choline acetyltransferase, and the muscarinic and nicotinic receptors were determined in whole mouse brain. The enzyme activities (per milligram of protein) increased steadily from birth, reaching adult levels at 20 days of age. These increases were primarily due to increases in Vmax. Muscarinic receptor numbers, measured by [3H]quinuclidinyl benzilate binding, also increased from birth to 25 days of age. Brain nicotinic receptors were measured with the ligands L-[3H]nicotine and alpha-[125I]-bungarotoxin. Neonatal mouse brain had approximately twice the number of alpha-bungarotoxin binding sites found in adult mouse brain. Binding site numbers rose slightly until 10 days of age, after which they decreased to adult values, which were reached at 25 days of age. The nicotine binding site was found in neonatal brain at concentrations comparable to those at the alpha-bungarotoxin site followed by a steady decline in nicotine binding until adult values were reached. Thus, brain nicotinic and muscarinic systems develop in totally different fashions; the quantity of muscarinic receptors increases with age, while the quantity of nicotinic receptors decreases. It is conceivable that nicotinic receptors play an important role in directing the development of the cholinergic system.  相似文献   

7.
Abstract: The activity of choline acetyltransferase was used as an index of cholinergic structures in regions of rat brain. The activities of ATP citrate lyase and choline kinase correlated poorly with cholinergic activity in whole tissue fractions, contrasting with the good correlation between acetylcholinesterase and choline acetyltransferase. Choline acetyltransferase was preferentially localised in synaptosomes prepared from regions of high (striatum) or intermediate (cortex, medulla oblongata/pons) cholinergic activity. In general, this was not true for either choline kinase or ATP citrate lyase.  相似文献   

8.
Cholinergic nerve terminals were affinity purified from rat caudate nucleus. These terminals possessed both high- (KT = 2.7 microM) and low- (KT = 58 microM) affinity uptake mechanisms for exogenous [3H]choline. The proportion of [3H]choline acetylated was reduced from 75 to 30% under conditions of anoxia and hypoglycaemia, whereas the phosphorylation of choline increased from 4 to 52%. Choline phosphorylation was also increased when the terminals were preloaded with choline. The affinity-purified terminals were shown to release acetylcholine in a Ca2+-dependent manner on depolarization. The relationship between choline acetylation and phosphorylation in the cholinergic nerve terminal is discussed.  相似文献   

9.
Colchicine injections in the supracommissural septum of the rat caused degeneration of several neurons in the nucleus triangularis septi and the nucleus septofimbrialis. The lesions resulted in significant decreases of choline acetyltransferase in the habenula (-34%) and in the nucleus interpeduncularis (-36%), thus demonstrating the existence of a major cholinergic projection to these nuclei from the supracommissural septum. A large fall in choline acetyltransferase was also noticed in the dorsal hippocampus as a consequence of colchicine damage to the fimbria-fornix fibers crossing the injected area.  相似文献   

10.
Choline Acetyltransferase Activity in the Rat Trigeminal System   总被引:1,自引:0,他引:1  
Choline acetyltransferase activity was investigated in the superior cervical ganglia and in six microdissected regions of the medulla oblongata of the rat ipsilateral and contralateral to electrolytic lesions of the trigeminal sensory ganglia (Gasserian). Electrolytic lesions of the Gasserian ganglia failed to modify levels of enzymatic activity in all structures studied. This result would be an argument against the existence of a major cholinergic population of sensory neurones in the trigeminal system.  相似文献   

11.
Abstract: The potential ability of Al to affect cholinergic transmission was studied on synaptosomal fractions of rat brain incubated with pyruvate in depolarizing medium containing 30 m M K+. Addition of 1 m M Ca caused a 266% increase in the acetylcholine (ACh) release despite decreased pyruvate oxidation. Under these conditions, 0.25 m M Al did not affect pyruvate oxidation but raised mitochondrial and decreased synaptoplasmic acetyl-CoA. Simultaneously, a 61% inhibition of Ca-evoked ACh release was observed. Verapamil (0.1 and 0.5 m M ) decreased the acetyl-CoA concentration in synaptoplasm and inhibited ACh release. Al (0.012 m M ) partially reversed these inhibitory effects. Omission of Pi from the medium abolished suppressive effects of Al on acetyl-CoA content and Ca-evoked transmitter release. We conclude that the Al(PO4)OH complex may be the active form of Al, which, by interaction with the verapamil binding sites of Ca channels, is likely to restrict the Ca influx to the synaptoplasm. This may inhibit the provision of acetyl-CoA to the synaptoplasm as well as the Ca-evoked ACh release. One may suppose that excessive accumulation of Al in some encephalopathic brains may, by this mechanism, suppress still-surviving cholinergic neurons and exacerbate cognitive deficits caused by already-existing structural losses in the cholinergic system.  相似文献   

12.
The effects of tacrine (1,2,3,4-tetrahydro-9-aminoacridine) and 7-methoxytacrine on the metabolism of brain acetylcholine were investigated in experiments in which acetylcholine turnover was stimulated by tissue depolarization or by 4-aminopyridine. Rat cerebrocortical prisms were preincubated under "resting" conditions (Krebs-Ringer buffer with 3 mmol/L K+ and with paraoxon to inhibit cholinesterases) and then incubated in the presence of tacrine or methoxytacrine and of 50 mmol/L K+. Both drugs diminished the amount of acetylcholine released by depolarization and the amount of acetylcholine synthesized during incubation; in experiments in which [14C]choline was present in the incubation medium simultaneously with tacrine or methoxytacrine, the drugs diminished the uptake of [14C]choline by the tissue and the amount of [14C]-acetylcholine synthesized and released into the medium. In these experiments, it was not possible to distinguish whether the inhibitory effects of tacrine and methoxytacrine were primarily on the process of acetylcholine synthesis (particularly on the uptake of choline), or whether the drugs also acted directly on the process of neurotransmitter release. In subsequent experiments the prisms were preincubated with [14C]choline and only then subjected to a short depolarization in the presence of hemicholinium-3 and tacrine or methoxytacrine. Both drugs severely inhibited the release of preformed [14C]acetylcholine and prevented the diminution of tissue [14C]acetylcholine stores. Methoxytacrine was also found to diminish the release of acetylcholine induced by 4-aminopyridine while increasing the content of acetylcholine in the tissue. Tacrine and methoxytacrine had no effect on the activity of choline acetyltransferase (EC 2.3.1.6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Uncovering the way membrane-bound choline acetyltransferase (ChAT) interacts with membranes and with which membrane in cholinergic neurons may help in understanding its role in acetylcholine metabolism. Subfractionation of rat hippocampal synaptosomes aiming to separate synaptic vesicles from plasma membranes shows that membrane-bound ChAT is bound to plasma membrane. Either detergents or urea and alkali can solubilize membrane-bound enzyme. Detergent-solubilized enzyme has a higher sedimentation rate than urea-alkali solubilized or cytosolic ChAT. Once dissociated, membrane-bound ChAT reassociates specifically with cholinergic plasma membranes, a process that was abolished by previous treatment of membranes with trypsin. Cytosolic ChAT behaves similarly. Thus, in cholinergic synaptosomes, ChAT exists as cytosolic and peripheral activity. Cytosolic ChAT generates peripheral enzyme most probably by interacting with a protein of plasma membrane of cholinergic nerve terminals. This receptor protein might regulate the amount of membrane-bound ChAT in cholinergic neurons.  相似文献   

14.
Abstract: The activities of pyruvate dehydrogenase, citrate synthase, and choline acetyltransferase in rat brain synaptosomes increased during on-togenesis by 3 and 14 times, respectively. Activity of ATP-citrate lyase decreased by 26% during the same period. Pyruvate consumption by synapto-somes from 1-day-old animals was 40% lower than that found in older rats; however, citrate efflux from intrasynaptosomal mitochondria in immature synaptosomes was over twice as high as that in mature ones. The rates of production of synaptoplasmic acetyl-CoA, ATP-citrate lyase were 1.03, 1.40, and 0.49 nmol/min/mg protein in 1-, 10-day-old, and adult rats, respectively. 3-Bromopyruvate (0.5 m M ) inhibited pyruvate consumption by 70% and caused a complete block of citrate utilization by citrate lyase in every age group. Parameters of citrate metabolism in cerebellar synaptosomes were the same as those in cerebral ones. These data indicate that production of acetyl-CoA. from citrate in synaptoplasm may be regulated either by adaptative, age-dependent changes in permeability and carrier capacity of the mitochondrial membrane or by the inhibition of synthesis of intramitochondrial acetyl-CoA. ATP-citrate lyase activity is not a rate-limiting factor in this process. Metabolic fluxes of pyruvate to cytoplasmic citrate and acetyl-CoA. are presumably the same in both cholinergic and noncholinergic nerve endings. The significance of citrate release from intrasynaptosomal mitochondria as a regulatory step in acetylcholine synthesis is discussed.  相似文献   

15.
The in vivo effects of beta-bungarotoxin (beta-BT) on the acetylcholine (ACh) system were studied in the whole cerebrum and in different brain regions. The effect of beta-BT on cerebral ACh and choline (Ch) contents was time-dependent. The results show that a single intracerebroventricular injection of 1 microgram toxin increased both the ACh and Ch contents in the cortex, hippocampus, and cerebellum, while in the striatum the ACh level was decreased. Ten nanograms of toxin injected into the lateral ventricle twice, on the first and third days, led to a reduced ACh level 2 days after the last treatment. In animals treated with the same dose three times, on the first, third, and fifth days, and sacrificed 2 days after the last injection, the choline acetyltransferase and acetylcholinesterase activities were reduced and the number of muscarinic acetylcholine receptors was decreased. A biphasic effect of the toxin was therefore demonstrated. It is suggested that in the first phase of the toxin effect the increased levels of ACh and Ch may be due to the inhibition of neuronal transmission, while in the second phase, when the elements of the ACh system are reduced, the neuronal degenerating effect of beta-BT plays a significant role.  相似文献   

16.
17.
A rapid and efficient immunoaffinity purification procedure has been developed for human placental choline acetyltransferase (ChAT). Using this procedure, human placental ChAT was purified to homogeneity with high recovery of enzyme activity (50-60%). Purified ChAT was used to raise a monospecific anti-human ChAT polyclonal antibody in rabbits. A comparison of the physical properties of ChAT was made between the enzymes purified from human brain and human placenta. Only one form of the enzyme exists in either tissue, having identical molecular weights of 68,000 and a single apparent pI of 8.1. A more detailed comparison of the two enzymes using peptide mapping and epitope mapping indicates identity between the brain and placental enzymes.  相似文献   

18.
The effects of intraperitoneally administered 4-(1-naphthylvinyl)pyridine (NVP; 200 mg/kg) on the concentrations of acetylcholine (ACh), choline (Ch), and acetyl-CoA (AcCoA) in rat striatum, cortex, hippocampus, and cerebellum were investigated. Twenty minutes after treatment, the content of ACh was significantly diminished, whereas that of Ch was increased. In response to stress (swimming for 20 min), these changes were enhanced. However, the AcCoA content did not change in any of the brain regions. It is thus very likely that the decrease of brain ACh concentration induced by NVP is due to the drug's effect on choline acetyltransferase (ChAT) and/or the reduction of the high-affinity Ch uptake, and not on the availability of AcCoA. Presumably, the pharmacologically diminished activity of ChAT may become the rate-limiting factor in the maintenance of ACh levels in cholinergic neurons.  相似文献   

19.
Abstract: Nerve growth factor (NGF) treatment of primary cultures of embryonic day 17 rat basal forebrain differentially altered activity of choline acetyltransferase (ChAT) and high-affinity choline transport; ChAT specific activity was increased by threefold in neurons grown in the presence of NGF for between 4 and 8 days, whereas high-affinity choline transport activity was not changed relative to control. Dose-response studies revealed that enhancement of neuronal ChAT activity occurred at low concentrations of NGF with an EC50 of 7 ng/ml, with no enhancement of high-affinity choline transport observed at NGF concentrations up to 100 ng/ml. In addition, synthesis of acetylcholine (ACh) and ACh content in neurons grown in the presence of NGF for up to 6 days was increased significantly compared with controls. These results suggest that regulation of ACh synthesis in primary cultures of basal forebrain neurons is not limited by provision of choline by the high-affinity choline transport system and that increased ChAT activity in the presence of NGF without a concomitant increase in high-affinity choline transport is sufficient to increase ACh synthesis. This further suggests that intracellular pools of choline, which do not normally serve as substrate for ACh synthesis, may be made available for ACh synthesis in the presence of NGF.  相似文献   

20.
Polyclonal antibodies against recombinant human nerve growth factor (rhNGF) potently inhibited PC12 neurite outgrowth, blocked high-affinity 125I-rhNGF binding but not its receptor, and cross-reacted with rat, mouse, and human nerve growth factor (NGF) but not with brain-derived neurotrophic factor, neurotrophin-3, ciliary neurotrophic factor, insulin-like growth factor, epidermal growth factor, or activin A. Immunocytochemistry revealed many NGF-positive neurons in the rat neostriatum. The NGF-positive neurons disappeared by 3 days after mechanical injury to the neostriatum and were replaced by intensely NGF- and glial fibrillary acidic protein-positive astrocytes. Enzyme-linked immunosorbent assay measurements revealed that the NGF content of the injured striatum was elevated by eightfold 3 days postinjury and by twofold 2 weeks later. The high-affinity choline uptake (HACU) into cholinergic nerve terminals was decreased by 23% at 2 and 4 weeks postinjury, yet choline acetyltransferase (ChAT) activity in these neurons was unchanged at 2 weeks and decreased by 14% at 4 weeks. Daily infusion of 1 microgram of rhNGF into the injury area did not alter the loss of HACU. However, this treatment elevated ChAT activity by 23-29% above intact neostriatal levels and by 53-65% relative to HACU at both survival times. Thus, lesion-induced increases in NGF levels within astrocytes are associated with maintenance of striatal ChAT activity at normal levels following cholinergic injury, even with decreases in HACU. Pharmacologic doses of rhNGF can further augment ChAT activity in damaged cholinergic neurons, showing the usefulness of exogenous NGF even when endogenous NGF is elevated in response to injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号