首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of ATP-citrate lyase in homogenates of five selected rat brain regions varied from 2.93 to 6.90 nmol/min/mg of protein in the following order: cerebellum < hippocampus < parietal cortex < striatum < medulla oblongata and that of the choline acetyltransferase from 0.15 to 2.08 nmol/min/mg of protein in cerebellum < parietal cortex < hippocampus=medulla oblongata < striatum. No substantial differences were found in regional activities of lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase or acetyl-CoA synthase. High values of relative specific activities for both choline acetyltransferase and ATP-citrate lyase were found in synaptosomal and synaptoplasmic fractions from regions with a high content of cholinergic nerve endings. There are significant correlations between these two enzyme activities in general cytocol (S3), synaptosomal (B) and synaptoplasmic (Bs) fractions from the different regions (r=0.92–0.99). These data indicate that activity of ATP-citrate lyase in cholinergic neurons is several times higher than that present in glial and noncholinergic neuronal cells.  相似文献   

2.
The activities of choline acetyltransferase and ATP-citrate lyase were significantly correlated (r = 0.995) in fractions of small and large synaptosomes isolated from rat hippocampus and cerebellum. The activities of these two enzymes did not correlate with those of pyruvate dehydrogenase, carnitine acetyltransferase, citrate synthase, acetyl-CoA synthetase, lactate dehydrogenase, or with the rate of high-affinity glutamate uptake in the synaptosomal fractions. The results provide additional evidence linking ATP-citrate lyase to the cholinergic system in the brain.  相似文献   

3.
The activities of ATP-citrate lyase in frog, guinea pig, mouse, rat, and human brain vary from 18 to 30 μmol/h/g of tissue, being several times higher than choline acetyltransferase activity. Activities of pyruvate dehydrogenase and acetyl coenzyme A synthetase in rat brain are 206 and 18.4 μmol/h/g of tissue, respectively. Over 70% of the activities of both choline acetyltransferase and ATP-citrate lyase in secondary fractions are found in synaptosomes. Their preferential localization in synaptosomes and synaptoplasm is supported by RSA values above 2. Acetyl CoA synthetase activity is located mainly in whole brain mitochondria (RSA, 2.33) and its activity in synaptoplasm is low (RSA, 0.25). The activities of pyruvate dehydrogenase, citrate synthase, and carnitine acetyltransferase are present mainly in fractions C and Bp. No pyruvate dehydrogenase activity is found in synaptoplasm. Striatum, cerebral cortex, and cerebellum contain similar activities of pyruvate dehydrogenase, citrate synthase, carnitine acetyltransferase, fatty acid synthetase, and acetyl-CoA hydrolase. Activities of acetyl CoA synthetase, choline acetyltransferase and ATP-citrate lyase in cerebellum are about 10 and 4 times lower, respectively, than in other parts of the brain. These data indicate preferential localization of ATP-citrate lyase in cholinergic nerve endings, and indicate that this enzyme is not a rate limiting step in the synthesis of the acetyl moiety of ACh in brain.  相似文献   

4.
Dibutyryl cyclic AMP and butyrate inhibited growth of S-20 (cholinergic) and NIE-115 (adrenergic) neuroblastoma clones. Both these drugs resulted in a parallel increase of choline acetyltransferase and ATP-citrate lyase activities in S-20 neuroblastoma cells. On the other hand, the increase in tyrosine hydroxylase activity in NIE-115 caused by these drugs was not accompanied by a significant change in ATP-citrate lyase activity. Both dibutyryl cyclic AMP and butyrate caused a decrease in fatty acid synthetase activity in both cell lines. The activities of pyruvate dehydrogenase, citrate synthase, choline acetyltransferase, and lactate dehydrogenase in both S-20 and NIE-115 cells were not significantly influenced by the drugs. ATP-citrate lyases from S-20 and NIE-115 had similar kinetic and immunological properties, and their subunits had the same molecular weight as the rat liver enzyme. These data indicate that the differential regulation of ATP-citrate lyase activity in cholinergic and adrenergic cells does not result from the existence of different molecular forms of the enzyme in these cell lines. They also provide further evidence to support the hypothesis that ATP-citrate lyase activity increases during maturation of normal cholinergic neurons and decreases in noncholinergic cells of the brain.  相似文献   

5.
Abstract: The activities of pyruvate dehydrogenase, citrate synthase, and choline acetyltransferase in rat brain synaptosomes increased during on-togenesis by 3 and 14 times, respectively. Activity of ATP-citrate lyase decreased by 26% during the same period. Pyruvate consumption by synapto-somes from 1-day-old animals was 40% lower than that found in older rats; however, citrate efflux from intrasynaptosomal mitochondria in immature synaptosomes was over twice as high as that in mature ones. The rates of production of synaptoplasmic acetyl-CoA, ATP-citrate lyase were 1.03, 1.40, and 0.49 nmol/min/mg protein in 1-, 10-day-old, and adult rats, respectively. 3-Bromopyruvate (0.5 m M ) inhibited pyruvate consumption by 70% and caused a complete block of citrate utilization by citrate lyase in every age group. Parameters of citrate metabolism in cerebellar synaptosomes were the same as those in cerebral ones. These data indicate that production of acetyl-CoA. from citrate in synaptoplasm may be regulated either by adaptative, age-dependent changes in permeability and carrier capacity of the mitochondrial membrane or by the inhibition of synthesis of intramitochondrial acetyl-CoA. ATP-citrate lyase activity is not a rate-limiting factor in this process. Metabolic fluxes of pyruvate to cytoplasmic citrate and acetyl-CoA. are presumably the same in both cholinergic and noncholinergic nerve endings. The significance of citrate release from intrasynaptosomal mitochondria as a regulatory step in acetylcholine synthesis is discussed.  相似文献   

6.
Inhibition of the activities of fatty acid synthase and ATP-citrate lyase (ATP-CL) by fatty acids and their CoA esters has been studied. Purified fatty acid binding protein from human fetal brain reverses this inhibition. This protein also activates the enzyme when added alone. ATP-citrate lyase and fatty acid synthase activity gradually increased with the advancement of gestation showing a relationship between high demand of fatty acid synthesis in developing brain and supply of its precursors.  相似文献   

7.
The aim of the present study was to reveal whether reduced cortical cholinergic input affects the acetyl-CoA metabolism in cholinoceptive cortical target regions which may play a causative role for the deficits in cerebral glucose metabolism observed in Alzheimer's disease. The effect of cortical cholinergic denervation produced by a single intracerebroventricular application of the cholinergic immunotoxin 192IgG-saporin, on activities of pyruvate dehydrogenase and adenosine triphosphate (ATP)-citrate lyase as well as on the level of synaptoplasmic and mitochondrial acetyl-CoA and acetylcholine release in cortical target regions was studied. Cholinergic lesion produced 83%, 72% and 32% decreases in the activities of choline acetyltransferase, acetylcholinesterase and ATP-citrate lyase in nerve terminals isolated from rat brain cortex, respectively, but no change in pyruvate dehydrogenase activity. Spontaneous and Ca2+-evoked acetylcholine release from synaptosomes was inhibited by 76% and 73%, respectively, following immunolesion. The lesion-induced 39% decrease of acetyl-CoA level in synaptosomal mitochondria was accompanied by 74% increase in synaptoplasmic fraction. Levels of acetyl-CoA and CoASH assayed in fraction of whole brain mitochondria from lesioned cortex were 61% and 48%, respectively, higher as compared to controls. The data suggest a preferential localization of ATP-citrate lyase in cholinergic nerve terminals, where it may contribute to the transport of acetyl-CoA from the mitochondrial to the cytoplasmic compartment. They provide evidence on differential distribution of acetyl-CoA in subcellular compartments of cholinergic and non-cholinergic nerve terminals. There are also indications that cholinergic activity affects acetyl-CoA level and its intracellular distribution in glial and other non-cholinergic cortical cells.  相似文献   

8.
Levels of fatty acid binding proteins (FABPs), lipids as well as activities of fatty acid synthesizing enzymes such as fatty acid synthase and ATP-citrate lyase increase with gestation showing maximum at term in human fetal lung. However, the activity of ATP-citrate lyase showed the same trend up to 30 weeks of gestation before declining slightly at term. These results indicate the importance of supply and/or synthesis of fatty acids when lung surfactant synthesis begins; thereby showing a correlation between the FABPs, lipid pattern and the activities of fatty acid synthesizing enzymes during prenatal lung development.  相似文献   

9.
Peroxisomes from Tetrahymena pyriformis contained catalase, d-amino acid oxidase, cyanide-insensitive fatty acyl-CoA oxidizing system, carnitine acetyltransferase, isocitrate lyase, leucine:glyoxylate aminotransferase and phenylalanine:glyoxylate aminotransferase. These activities, except carnitine acetyltransferase, were found at the highest levels in the light mitochondrial fraction, whereas the highest activity of carnitine acetyltransferase was found in the micotchondrial fraction. Sucrose density gradient centrifugation showed that the density of peroxisomes was approx. 1.228 g/ml and that of mitochondria was approx. 1.213 g/ml. When the light mitochondrial fraction was treated with deoxycholate or by freeze-thawing, most of the activities of catalase and isocitrate lyase were solubilized, whereas about half of the original activity of aminotransferase remained in the pellet fraction. Addition of fatty acid and clofibrate increased the activities of the cyanide-insensitive fatty acyl-CoA oxidizing system and isocitrate lyase in the peroxisomes. The activity of catalase was slightly increased by glucose and clofibrate; leucine:glyoxylate aminotransferase activity was significantly increased by clofibrate treatment.  相似文献   

10.
Acetyl CoA carboxylase, ATP-citrate lyase and fatty acid synthetase were purified to homogeneity by a simple procedure. The purification method consists of polymerization of acetyl CoA carboxylase with citrate followed by avidin-Sepharose affinity chromatography. ATP-citrate lyase and fatty acid synthetase were isolated as by-products of acetyl CoA carboxylase purification and are separated from each other by chromatography on DE-52. ATP-citrate lyase was further purified by CoA-agarose affinity chromatography and fatty acid synthetase was purified on Bio-Gel A-1.5m. Purified ATP-citrate lyase, acetyl CoA carboxylase and fatty acid synthetase had specific activities of 9.9, 2.8 and 1.8 U/mg respectively with an over all recovery of 30, 25 and 50% respectively. Using these purified enzymes, we found that ATP-citrate lyase and acetyl CoA carboxylase were phosphorylated in vitro by both cAMP-dependent protein kinase and ATP-citrate lyase kinase whereas fatty acid synthetase was not phosphorylated by these protein kinases.  相似文献   

11.
We have examined the mechanism whereby glucagon stimulates the phosphorylation of ATP-citrate lyase in intact rat hepatocytes. Purified ATP-citrate lyase is phosphorylated in vitro by the catalytic subunit of the cyclic AMP-dependent protein kinase, in a reaction wherein 2-3 mol phosphate/mol lyase are incorporated, at an initial rate that approaches that observed for mixed histone. This reaction is completely abolished by the protein kinase inhibitor protein. Limited tryptic digestion of ATP-citrate lyase phosphorylated in vitro by the cyclic AMP-dependent protein kinase yields a pattern of 32P-labeled peptides, indistinguishable from those observed in parallel digests of lyase isolated from 32P-labeled, glucagon-stimulated hepatocytes. Phosphorylase b kinase catalyzes the incorporation of 1 mol phosphate/mol lyase, albeit at less than 1/160 the rate observed for phosphorylase b. The phosphorylation of purified ATP-citrate lyase is also catalyzed by homogenates of hepatocytes. This reaction is stimulated by cyclic AMP. At 30 degrees C, in the presence of maximally stimulating concentrations of cyclic AMP, the addition of excess protein kinase inhibitor protein inhibits the phosphorylation of ATP-citrate lyase by 67%. Thus, hepatocytes contain both cyclic AMP-dependent and cyclic AMP-independent ATP-citrate lyase kinase activities. Pretreatment of hepatocytes with glucagon (10(-8) M for 2 min) prior to homogenization results in activation of an endogenous hepatocyte ATP-citrate lyase kinase, as well as histone kinase and phosphorylase b kinase; the glucagon-stimulated increment in lyase kinase (and histone kinase) is observed only when homogenates are assayed in the absence of added cyclic AMP, and is completely abolished by an excess of the protein kinase inhibitor protein. We conclude that the glucagon-stimulated phosphorylation of ATP-citrate lyase in intact hepatocytes is catalyzed directly by the cyclic AMP-dependent protein kinase.  相似文献   

12.
Acetyl-CoA Synthesizing Enzymes in Cholinergic Nerve Terminals   总被引:9,自引:8,他引:1  
The activities of five enzymes involved in acetyl-CoA synthesis, pyruvate dehydrogenase complex, ATP citrate lyase, carnitine acetyltransferase, acetyl-CoA synthetase, and citrate synthase, were determined in normal nucleus interpeduncularis and nucleus interpeduncularis in which cholinergic terminals were removed following lesion of the habenulointerpeduncular tract. The activities of aspartate transaminase, fumarase, and GABA transaminase also were determined to compare the effect of lesion on other mitochondrial enzymes which are not linked to the biosynthesis of ACh. In normal nucleus interpeduncularis the activities of carnitine acetyltransferase and pyruvate dehydrogenase complex were higher than the activity of ChAT (choline acetyltransferase), whereas the activities of acetyl-CoA synthetase and citrate synthase were considerably lower than that of ChAT. The effect of the lesion separated the enzymes into two groups: the activities of pyruvate dehydrogenase complex, carnitine acetyltransferase, fumarase and aspartate transaminase decreased by 30--40%, whereas the activities of the other enzymes descreased 5--15%. ChAT activity was in all cases less than 15% of normal. It could be concluded that none of the acetyl-CoA synthesizing enzymes decreased to the degree that ChAT did. Only pyruvate dehydrogenase complex and carnitine acetyltransferase seem to be localized in cholinergic terminals to a significant degree. ATP citrate lyase as well as acetyl-CoA synthetase seem to have less significance in supporting acetyl-CoA formation in cholinergic nerve terminals.  相似文献   

13.
Homogeneous rat liver ATP-citrate lyase (EC 4.1.3.8) was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. In agreement with other workers, the maximum level of phosphorylation that we observed was approx. 2 mol/mol of tetramer. Phosphorylated and non-phosphorylated forms of ATP-citrate lyase were prepared. Their kinetic properties were examined using an assay system in which the concentrations of Mg.ATP, magnesium.citrate and CoA were varied systematically at a constant concentration of Mg2+. The phosphorylated form had a two-fold higher Km for Mg.ATP than did the non-phosphorylated form, but no other kinetic differences between the two forms were detected. When ATP-citrate lyase was assayed at a concentration of Mg.ATP well below Km, it was found that phosphorylation of the enzyme correlated well with a decrease of approx. 50% in its activity. This is the first demonstration that phosphorylation can affect the activity of ATP-citrate lyase.  相似文献   

14.
Abstract

Acetyl CoA carboxylase, ATP-citrate lyase and fatty acid synthetase were purified to homogeneity by a simple procedure. The purification method consists of polymerization of acetyl CoA carboxylase with citrate followed by avidin-Sepharose affinity chromatography. ATP-citrate lyase and fatty acid synthetase were isolated as by-products of acetyl CoA carboxylase purification and are separated from each other by chromatography on DE-52. ATP-citrate lyase was further purified by CoA-agarose affinity chromatography and fatty acid synthetase was purified on Bio-Gel A-1.5m. Purified ATP-citrate lyase, acetyl CoA carboxylase and fatty acid synthetase had specific activities of 9.9, 2.8 and 1.8 U/mg respectively with an over all recovery of 30, 25 and 50% respectively. Using these purified enzymes, we found that ATP-citrate lyase and acetyl CoA carboxylase were phosphorylated in vitro by both cAMP-dependent protein kinase and ATP-citrate lyase kinase whereas fatty acid synthetase was not phosphorylated by these protien kinases.  相似文献   

15.
Multifunctional protein kinase (MFPK) phosphorylates ATP-citrate lyase on peptide B on two sites, BT and BS, on threonine and serine, respectively, inhibitor 2 on a threonyl residue, and glycogen synthase at sites 2 and 3. The phosphorylation sites BT and BS of ATP-citrate lyase are dependent on prior phosphorylation at site A whereas site A phosphorylation is decreased by prior phosphorylation at sites BT and BS. To study the MFPK recognition sites and the site-site interactions, the amino acid sequences of ATP-citrate lyase peptide B and inhibitor 2 were determined and compared to each other and to glycogen synthase sites 3-5. The sequence of the tryptic peptide containing the two phosphorylation sites of peptide B is -Phe-Leu-Leu-Asn-Ala-Ser-Gly-Ser-Thr-Ser-Thr(P)-Pro-Ala-Pro-Ser(P)-Arg-, and the sequence of the MFPK phosphorylation site of inhibitor 2 is -Ile-Asp-Glu-Pro-Ser-Thr(P)-Pro-Tyr-. This inhibitor 2 site is identical with the site phosphorylated by glycogen synthase kinase 3/FA. These results suggest that at least some of the sites phosphorylated by MFPK (BT of ATP-citrate lyase, Thr 72 of inhibitor 2, and sites 3b and 4 of glycogen synthase) contain a Ser/Thr flanked by a carboxyl-terminal proline. However, as MFPK did not phosphorylate a series of peptides containing the -X-Thr/Ser-Pro-X- sequence, this minimum consensus sequence is not sufficient for phosphorylation by MFPK.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The induction of ATP-citrate lyase activity in mouse liver by dietary carbohydrate (glucose) is markedly reduced by including in the diet a source of polyunsaturated fatty acids. Within 72 h after changing from a standard mouse chow diet to a high carbohydrate diet containing 15% (w/w) of hydrogenated cottonseed oil (as a source of saturated fatty acids), the activity of mouse liver ATP-citrate lyase per milligram cytosolic protein was approx. 3-fold higher than that from mice fed a similar diet containing 15% (w/w) of corn oil. The rate of synthesis of ATP-citrate lyase relative to that for total protein and the rate of degradation of the enzyme were similar for both dietary groups. Elevated levels of enzyme activity in the hydrogenated cottonseed oil-fed livers were not accompanied by a similar increase in the amount of enzyme protein. To explain such findings, we propose that the activity of hepatic ATP-citrate lyase is regulated by dietary polyunsaturated fatty acids through a mechanism involving the conversion of a catalytically active form of the enzyme to a catalytically inactive form. A reversal of this conversion (inactive-active)_is evident within 72 h of removing the mice from the corn oil diet and placing them on the hydrogenated cottonseed oil diet. Futhermore, the conversion appears to be independent of the in vivo rate of synthesis of the enzyme.  相似文献   

17.
Cloning and expression of a human ATP-citrate lyase cDNA.   总被引:1,自引:0,他引:1  
A full-length cDNA clone of 4.3 kb encoding the human ATP-citrate lyase enzyme has been isolated by screening a human cDNA library with the recently isolated rat ATP-citrate lyase cDNA clone [Elshourbagy et al. (1990) J. Biol. Chem. 265, 1430]. Nucleic-acid sequence data indicate that the cDNA contains the complete coding region for the enzyme, which is 1105 amino acids in length with a calculated molecular mass of 121,419 Da. Comparison of the human and rat ATP-citrate lyase cDNA sequences reveals 96.3% amino acid identity throughout the entire sequence. Further sequence analysis identified the His765 catalytic phosphorylation site, the ATP-binding site, as well as the CoA binding site. The human ATP-citrate lyase cDNA clone was subcloned into a mammalian expression vector for expression in African green monkey kidney cells (COS) and Chinese hamster ovary cells (CHO) cells. Transfected COS cells expressed detectable levels of an enzymatically active recombinant ATP-citrate lyase enzyme. Stable, amplified expression of ATP-citrate lyase in CHO cells as achieved by using coamplification with dihydrofolate reductase. Resistant cells expressed high levels of enzymatically active ATP-citrate lyase (3 pg/cell/d). Site-specific mutagenesis of His765----Ala diminishes the catalytic activity of the expressed ATP-citrate lyase protein. Since catalysis of ATP-citrate lyase is postulated to involve the formation of phosphohistidine, these results are consistent with the pattern of earlier observations of the significance of the histidine residue in catalysis of the human ATP-citrate lyase.  相似文献   

18.
The effects of vanadate administration on the plasma lipids and hepatic lipogenic enzymes were investigated in Zucker (fa/fa) rat, a model for obesity and non insulin-dependent diabetes. These animals were administered sodium orthovanadate through drinking water for a period of four months. The plasma levels of insulin, triacylglycerols and total cholesterol were significantly (p<0.001) elevated in untreated obese control rats as compared to the lean animals. In the livers of obese rats, the number of insulin receptors decreased by 60% and the activities of lipogenic enzymes acetyl-CoA carboxylase and ATP-citrate lyase increased by 4.7- and 5.6-folds, respectively. The messenger RNA for ATP-citrate lyase as measured by Northern blot analysis showed a parallel increase in obese control rats. Treatment of these rats with vanadate caused 56–77% decreases in the plasma levels of insulin, triacylglycerols and total cholesterol. The insulin receptor numbers in vanadate-treated obese rats increased (119%) compared to levels in untreated obese animals. The elevated activities of acetyl-CoA carboxylase and ATP-citrate lyase observed in livers of obese rats were significantly reduced by vanadate. The messenger RNA for ATP-citrate lyase also decreased in vanadate-treated obese rats back to the lean control levels. This study demonstrates that vanadate exerts potent actions on lipid metabolism in diabetic animals in addition to the recognized effects on glucose homeostasis.  相似文献   

19.
ATP-citrate lyase has been purified from rat brain by a new procedure which yields an enzyme of specific activity of 21 U/mg protein (37 °C) (2050-fold purification). Purity (by sodium dodecyl sulfate-gel electrophoresis) of the preparation was comparable to that of rat liver ATP-citrate lyase of similar specific activity. Both brain and liver ATP-citrate lyase have the same electrophoretic mobility, as well as the same immunoreactivity against specific rabbit anti-rat liver ATP-citrate lyase antibody. These data indicate that rat brain ATP-citrate lyase is similar or identical to that present in rat liver. Intraperitoneally injected 32Pi was incorporated into the structural phosphate of ATP-citrate lyase in rat liver but not into the rat brain enzyme.  相似文献   

20.
The activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), malic enzyme (EC 1.1.1.40), ATP-citrate lyase (EC 4.1.3.8), acetyl-CoA carboxylase (EC 6.4.1.2) and fatty acid synthetase were lower (-25 to -60%) in liver of rats fed during 45 days with a moderate long-chain triglycerides (LCT) content diet (32% of metabolizable energy, ME), than in control rats fed with a low fat diet (LCT, 10% of ME). However, the fall in malic enzyme activity was not significant. In contrast, these activities were higher (+40 to +160%) in rats fed with a diet with a moderate medium-chain triglycerides (MCT) content (32% of ME), than in control rats. Nevertheless, the increase in activity of malic enzyme and ATP-citrate lyase was more important. Contrary to LCTs, MCTs had no inhibitory effect on the activity of enzymes involved in hepatic lipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号