共查询到19条相似文献,搜索用时 31 毫秒
1.
Effects of Ceratocystis fimbriata on phenolics content, PPO and PAL activity in sweet potato 总被引:1,自引:0,他引:1
选用对甘薯黑斑病抗性不同的品种南京-92(高抗)和烟台-252(高感)的叶片为材料,研究黑斑病对甘薯叶总酚含量、绿原酸含量、类黄酮含量以及苯丙氨酸解氨酶(PAL)活性和酚氧化酶(PPO)活性的影响.结果表明:在未受黑斑病侵染时,南京-92叶片中类黄酮含量、绿原酸含量、PAL活性显著或极显著高于烟台-252,可以作为选育和鉴定抗黑斑病品种的生理指标,但总酚含量和PPO活性差异不显著.接种后2~8 d内,南京-92叶片内总酚含量和PPO活性增加迅速,与烟台-252达到显著或极显著差异,总酚含量和PPO活性的上升速度快、保持时间长,有利于提高对黑斑病的抵抗能力. 相似文献
2.
3.
采用盆栽接种试验、平皿涂抹法测数及常规酶活测定法研究了7株拮抗性放线菌在辣椒根部的定殖能力及接种24d对辣椒叶片苯丙氨酸解氨酶(PAl。)与多酚氧化酶活性(PPO)的诱导效应。结果表明:(1)供试7株放线菌单独接种均不能在辣椒根内定殖,但与辣椒疫霉P3混合接种时有5株可定殖;供试放线菌在辣椒根部的定殖能力与其体外平皿试验中产生的的拈抗圈大小基本无关;可定殖放线菌的定殖密度随时间延长而降低,至40d时均无活菌检出。(2)在放线菌单接处理中,5株菌接种后可诱导辣椒叶片PAL,活性提高,全部供试菌均能诱导PPO活性提高,其中可使两种酶同步提高的有5株菌;在放线菌+P3混接处理中,有6株接种后可诱导PAL,活性提高,5株菌能诱导PPO活性提高,其中可使两种酶同步提高的有4株菌;在接入放线菌时同时混接辣椒疫霉,能增强2株供试放线菌对辣椒叶片PAL活性及6株供试放线菌对辣椒叶片PPO活性的诱导作用;供试放线菌的定殖能力与辣椒叶片PAL及PPO活性变化无明显规律性关系。 相似文献
4.
胚乳对幼苗中苯丙氨酸解氨酶(PAL)活性的影响 总被引:1,自引:0,他引:1
在小麦、大麦、玉米黄化幼苗的萌发过程中,PAL活性有“消长”现象。当去胚乳后,幼苗中PAL活性普遍下降。亚胺环己酮处理可以阻止去胚乳造成的PAL活性下降。大麦、小麦去胚乳老化12h幼苗的提取液可在体外抑制整体苗的PAL活性。表明胚乳在调节幼苗体内PAL活性方面具有一定的作用。去胚乳后体内有PAL“抑制蛋白”的积累。 相似文献
5.
为了明确苯丙氨酸解氨酶活和过氧化物酶活与玉米对镰刀菌茎腐病的抗性关系,探讨玉米对镰刀菌茎腐病的抗病机制及其在玉米抗病性鉴定中的利用,用禾谷镰刀菌孢子悬浮液对抗病品种陕单931和感病品种西农11号在抽雄初期进行接种,并于接种后测定茎秆髓部组织内的PAL,POD活性变化以及POD同工酶谱的变化。结果表明,玉米植株受镰刀菌侵染后,抗病品种的PAL酶活上升快,活性强,且形成两个活性高峰,高活性时间持续长;感病品种PAL酶活上升慢,活性相对较弱,且只形成一个峰,高活性持续时间短。抗病品种POD酶活峰值高,感病品种峰值低;抗病品种高酶活持续的时间长,感病品种高酶活持续的短。POD同工酶谱研究表明,抗、感品种POD同工酶带都有增多。抗病品种增5条,感病品种新增2条。PAL活性变化、POD活性变化及同工酶谱酶活变化与其对茎腐病的抗性有密切的关系,可作为抗病育种的生理生化指标。 相似文献
6.
茉莉酸甲酯对水稻幼苗叶片中碳水化合物含量及苯丙氨酸解氨酶和多酚氧化酶活性的影响(简报) 总被引:4,自引:0,他引:4
2.5×10-7及2.5×10-4mol·L-1茉莉酸甲酯处理均能降低水稻幼苗叶片中可溶性糖及淀粉的含量,尤其是后者;但对纤维素和木质素的含量以及PAL和多酚氧化酶的活性则有促进作用,且随处理时间的延长而有增强的趋势。 相似文献
7.
水稻抗稻瘟病与苯丙氨酸解氨酶及过氧化物酶活性的相关性 总被引:11,自引:0,他引:11
已知苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)与水稻抗稻瘟病有密切相关,水稻受到稻瘟病菌(Pyricularia oryzae)侵染时,体内PAL与POD活性会发生显著变化。本文采用30个水稻(Oryza sativa)品种为材料,选择经常规浸种、催芽、生长较一致的种子,每一品种 相似文献
8.
利用苯丙氨酸解氨酶(PAL,phenylalanine ammonia-lyase)基因保守区域从小麦抗赤霉病材料苏麦3号中克隆获得4个PAL基因,分别命名为Ta PAL1、Ta PAL2、Ta PAL3、Ta PAL4。4个基因的开放阅读框(ORF,open reading frame)长度分别为2142 bp、2016 bp、2118 bp和2139 bp,分别编码714个、672个、706个和713个氨基酸。基因序列比对发现其相似性达到88.35%,所编码的氨基酸相似性为91.92%,氨基酸序列分析表明4个基因都包含HAL-PAL结构域及PAL结构域。通过接种禾谷镰刀菌,利用荧光定量PCR对PAL基因进行表达分析发现,4个PAL基因全部为上调表达,其中Ta PAL2、Ta PAL3和Ta PAL4最为明显。PAL基因的上调表达,说明PAL基因在小麦抵抗赤霉病菌侵染的机制中可能起着重要作用。 相似文献
9.
茉莉酸甲酯诱导烟草幼苗抗炭疽病与PAL活性及细胞壁物质的关系 总被引:5,自引:1,他引:5
探讨了茉莉酸甲酯(methyl jasmonate,
Me-Ja)诱导烟草幼苗抗炭疽病与苯丙氨酸解氨酶(PAL)活性、木质素和富含羟脯氨酸蛋白(HRGP)含量的关系。
Me-Ja处理烟草幼苗不仅可以提高幼苗抗炭疽病的能力,而且明显提高幼苗的PAL活性、木质素和HRGP含量;
3个不同抗性品种的烟草幼苗的PAL酶活性、木质素和HRGP含量三者与感病程度之间的负相关都达到显著水平,表明PAL、木质素和富含羟脯氨酸蛋白(HRGP)在茉莉酸甲酯诱导抗病中起关键作用。 相似文献
10.
以谷子(Setaria italica(L)Beauv.)为对象,从拔节期开始持续给予低氮(1.875 mmol/L)和高氮(15 mmol/L)两种氮供应条件并从抽穗期开始进行26 d两种强度(4.29、7.12 kJ·m-2·d-1)的增强UV-B辐射处理,研究了谷子叶中光合色素含量、类黄酮含量和苯丙氨酸解氨酶(PAL)活性的变化.结果表明:与高氮供应条件相比,低氮供应条件明显降低了谷子叶中光合色素含量但提高了类胡萝卜素/叶绿素含量比值;在开花期中段和灌浆期中段,高氮供应条件下谷子叶中光合色素含量对增强UV-B辐射比低氮供应条件下的谷子更敏感.从灌浆期开始到处理结束,两种影响因子对谷子叶中类黄酮含量均有显著影响,增强UV-B辐射导致谷子叶中类黄酮含量逐渐升高,且相同增强UV-B辐射强度下低氮供应条件下的谷子叶中类黄酮含量明显高于高氮供应条件下的谷子.谷子叶中PAL活性对两种影响因子的响应较类黄酮含量更加敏感,低氮供应条件使谷子叶中PAL活性明显提高.结合上述指标的相关性分析结果可知,低氮供应条件加强了处于繁殖期主要阶段的谷子叶中类黄酮的积累,并使谷子叶中的类胡萝卜素/叶绿素含量比值明显提高,进而有助于维持谷子叶中光合色素含量在增强UV-B辐射条件下的相对稳定性,对植株抵抗UV-B辐射伤害有利. 相似文献
11.
Shyanadrahalli Chandrashekaraiah Vanitha Siddapura Ramachandrappa Niranjana Sharanaiah Umesha 《Journal of Phytopathology》2009,157(9):552-557
Plants respond to bacterial pathogen attack by activating various defence responses, which are associated with the accumulation of several factors like defence-related enzymes and inhibitors which serve to prevent pathogen infection. The present study focused on the role of the defence-related enzymes phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) in imparting resistance to tomato against bacterial wilt pathogen Ralstonia solanacearum . The temporal pattern of induction of these enzymes showed maximum activity at 12 h and 15 h for PAL and PPO, respectively, after the pathogen inoculation (hpi) in resistant cultivars. Twenty different tomato cultivars were analyzed for PAL, PPO and total phenol content following pathogen inoculation. The enzyme activities and total phenol content increased significantly (P < 0.05) in resistant cultivars upon pathogen inoculation. The increase in enzyme activities and total phenol content were not significant in susceptible and highly susceptible cultivars. The role of PAL and PPO in imparting resistance to tomato against bacterial wilt disease is discussed. 相似文献
12.
Manjukarunambika Kolandasamy Ponmurugan Ponnusamy 《Archives Of Phytopathology And Plant Protection》2013,46(4):451-462
Red root rot caused by Poria hypolateritia is a dreadful disease in tea plant due to sudden death of bushes. In response to fungal pathogen, variation in the defence-related enzymes was investigated. The infected tea root was undertaken to study about various defence-related and pathogen-related enzymes. The infected root, as a prime response to disease attack, was subjected to the analysis of phenolics, phenylalanine ammonia lyase, tyrosine ammonia lyase, peroxidase, polyphenol oxidase, catalase, chitinase, β-1,3-glucanase and protease were assayed. The results on assay of defence-related enzymes revealed that the activity was significantly higher in infected roots when compared with healthy roots. Phenolics were accumulated more in infected roots. The sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis further confirmed the presence of induced pathogenesis-related proteins in the infected root tissues. The activity of all enzymes was increased up to threefold amount when compared with normal ones. The accumulation of defence enzymes in plants revealed the virulence of root pathogen in stimulating induced systemic resistance of tea plants and phytopathogenicity causing pathogenesis. This study exemplify to recognise underlying processes in causing infection and to identify the existence of host–pathogen relationship. 相似文献
13.
Hadis Mostafanezhad Navazollah Sahebani Shaheen Nourinejhad Zarghani 《Biocontrol Science and Technology》2014,24(2):203-215
Root-knot nematodes (RKN) (Meloidogyne spp.) are economically the most important pathogens of agricultural products. The aim of the present study was to control Meloidogyne javanica by using Arthrobotrys oligospora and salicylic acid (SA) and to analyse the kinetics of enzymes, phenylalanine ammonia lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO) and phenolic compounds accumulation in the root system of tomato after inoculation with M. javanica, A. oligospora and SA. The ability of A. oligospora to produce extracellular proteases was also examined. In greenhouse studies, we used soil drenching of A. oligospora (106 spores/ml) and soil drenching or leaf spraying of SA (5 mM) in six-leaf stage, separately and in combination. Experiments were performed in a completely randomised design. The efficiencies of treatments were appraised by using diameter of galls, number of galls per plant, number of egg masses per plant, number of eggs per egg mass, root and foliage fresh weight. The results showed that the combined application of A. oligospora and SA provided the best nematode control. The activity of the enzymes and phenolic compounds increased in comparison with the control. The nematophagous fungus A. oligospora produced extracellular proteases in the broth culture. Using A. oligospora and SA could be effective in control of M. javanica in tomato. 相似文献
14.
S. Ketabchi Sh. Majzoob H.A. Charegani 《Archives Of Phytopathology And Plant Protection》2013,46(1):10-17
The effect of biochemical responses in wheat seedlings cultivar Falat against lesion nematode (Pratylenchus thornei) was investigated by two factors inducer resistance salicylic acid (SA) and methyl jasmonate (MeJA). Foliar sprays with 1?ml SA 1?mM and 1?ml MeJA 100?μM was conducted on 20-day-old wheat (cv. Falat) seedlings. About 24?h after foliar sprays, plants were inoculated by root lesion nematode. Phenylalanine ammonia-lyase (PAL) activity was increased significantly in all treatments two days after inoculation over control. However, PAL activity was decreased in all treatments five days after inoculation in compared to control. What is more, in both time points, total phenol increased in all treatments over control. The comparison of both inducers SA and MeJA on total phenol in healthy and infected wheat seedlings in both days two and five after inoculation of nematode indicated that total phenol has decreased significantly in all treatments in the fifth day. 相似文献
15.
Suspension cultured cells of a blast-resistant rice genotype (Oryza sativa L. cv. Gigante Vercelli) were treated with cell wall hydrolysates prepared from the fungal pathogen Magnaporthe oryzae. As a consequence, a complex pattern of phenylalanine ammonia lyase time course specific activity levels was evident. Ion-exchange chromatographic fractionation of crude extracts suggested that the early (6 h) and the late (48-72 h after elicitation) increase of activity relied upon the sequential induction of two different isoenzymes. The relative expression levels of 11 genes putatively coding for a phenylalanine ammonia lyase were measured by semi-quantitative capillary gel electrophoresis of RT-PCR products. Two genes were indeed found to be induced by treatments with the hydrolysate, and data were validated by real-time PCR. Conversely, only the early-responsive enzyme form was observed following elicitation in a blast-sensitive rice genotype (cv. Vialone nano). Therefore, the late-responsive isoform may represent a candidate gene to select for decreased sensitivity to blast. 相似文献
16.
The shikimate/arogenate pathway: Link between carbohydrate metabolism and secondary metabolism 总被引:2,自引:0,他引:2
Roy A. Jensen 《Physiologia plantarum》1986,66(1):164-168
17.
《Bioscience, biotechnology, and biochemistry》2013,77(5):829-832
Chlorogenic acid (CQA) is one of the major polyphenols in apple and a good substrate for the polyphenol oxidase (PPO) in apple. Apple contains catechins as well as CQA, and the role of CQA quinone and its interaction with catechins in the enzymatic browning of apple were examined. Browning was repressed and 2-cysteinyl-CQA was formed when cysteine was added to apple juice. CQA quinone was essential for browning to occur. Although catechins and CQA were oxidized by PPO, some catechins seemed to be non-enzymatically oxidized by CQA quinone. 相似文献
18.
Amar Bahadur D. P. Singh B. K. Sarma U. P. Singh 《Archives Of Phytopathology And Plant Protection》2013,46(4):398-403
Phenylalanine ammonia lyase (PAL) activity was measured using HPLC in pea leaves following exogenous application of l-phenylalanine and ferulic acid. Treatment with different concentrations (50, 100 and 150 ppm) of l-phenylalanine caused increased activity of PAL in comparison to the control. In pea leaves treated with 50 ppm l-phenylalanine, maximum PAL activity was observed after 72 h of treatment. Application of ferulic acid first reduced PAL activity at lower concentration (50 ppm) but increased at higher concentrations of the compound (100 and 150 ppm) in pea leaves as compared to the control. Maximum PAL activity was 0.19 nM cinnamic acid/min/g fresh wt. after 24 h at 50 ppm and then increased with time. Treatment with both the compounds significantly reduced conidial germination of Erysiphe pisi on pea leaves. They were equally effective at 100 and 150 ppm in reducing conidial germination. The conidial germination on l-phenylalanine-treated leaves was 26% after 24 h and that on ferulic acid-treated leaves was 34% as compared to the control (46%). Foliar application of different concentrations of l-phenylalanine increased the level of ferulic acid in the leaves of pea plants. Maximum accumulation of ferulic acid (79.3 and 83.5 μg/g fresh wt.) was observed following the application of l-phenylalanine after 24 h and 48 h, respectively. At 50 ppm, ferulic acid accumulation in pea leaves was 35.6 and 39.4 μg/g fresh wt. and 74.3 and 86.5 μg/g fresh wt. at 100 ppm. 相似文献
19.
苯丙氨酸脱氨酶cDNA在大肠杆菌中的克隆与表达及酶法合成L-苯丙氨酸 总被引:3,自引:0,他引:3
利用基因重组技术 ,在大肠杆菌中克隆并表达苯丙氨酸脱氨酶 (PAL) (EC4 .3 .1 .5) ,并应用此酶转化肉桂酸生成L 苯丙氨酸。方法是将欧芹苯丙氨酸脱氨酶cDNA亚克隆到组成型表达载体pMG3 6e启动子P3 2下游 ,以菌落PCR法鉴定插入片段的大小和方向都正确的克隆 ,进而以HPLC检测肉桂酸浓度的方法鉴别重组质粒有催化肉桂酸生成L 苯丙氨酸的酶活力。结果获得能表达PAL酶活性的阳性克隆 ,在pH1 0 ,含 1 .0 %肉桂酸、8.0mol/L氨的转化液中 ,3 0℃反应 2 0h ,肉桂酸重量转化率可达 60 %。该基因工程菌有希望用于工业化生产L 苯丙氨酸。 相似文献