首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that regulates fatty acid transport and metabolism. Previous studies revealed that PPARα can affect bile acid metabolism; however, the mechanism by which PPARα regulates bile acid homeostasis is not understood. In this study, an ultraperformance liquid chromatography coupled with electrospray ionization qua dru pole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based metabolomics approach was used to profile metabolites in urine, serum, and bile of wild-type and Ppara-null mice following cholic acid (CA) dietary challenge. Metabolomic analysis showed that the levels of several serum bile acids, such as CA (25-fold) and taurocholic acid (16-fold), were significantly increased in CA-treated Ppara-null mice compared with CA-treated wild-type mice. Phospholipid homeostasis, as revealed by decreased serum lysophos phati dylcholine (LPC) 16:0 (1.6-fold) and LPC 18:0 (1.6-fold), and corticosterone metabolism noted by increased urinary excretion of 11β-hydroxy-3,20-dioxopregn-4-en-21-oic acid (20-fold) and 11β,20α-dihydroxy-3-oxo-pregn-4-en-21-oic acid (3.6-fold), were disrupted in CA-treated Ppara-null mice. The hepatic levels of mRNA encoding transporters Abcb11, Abcb4, Abca1, Abcg5, and Abcg8 were diminished in Ppara-null mice, leading to the accumulation of bile acids in the liver during the CA challenge. These observations revealed that PPARα is an essential regulator of bile acid biosynthesis, transport, and secretion.  相似文献   

2.
Free radical-induced lipid peroxidation (LP) is thought to be important in alcoholic liver disease (ALD), however, direct demonstration of increased LP in patients with ALD has been difficult. Quantification of F2-isoprostanes (F2-isoP), prostanoids produced by peroxidation of arachidonic acid, in plasma and urine are sensitive and specific indices of LP in vivo. To determine if LP is increased in ALD, 24-h urinary excretion of F2-isoPs were measured in 10 patients hospitalized because of ALD. The mean urinary excretion of the F2-isoP in the ALD patients' urine was 9.6+/-3.5 ng/mg creatinine, which was significantly elevated compared to controls' urinary excretion, which was 1.7+/-0.2 ng/mg creatinine (p<.01). The urinary excretion of F2-isoP decreased to 3.6+/-1.1 ng/mg creatinine as the patients improved clinically with abstinence over the 1-month period. These data suggest that lipid peroxidation, as assessed by this noninvasive method, is increased in patients with acute ALD and decreases with time as the patients improve clinically with abstinence.  相似文献   

3.

Background

Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency.

Methodology/Principal Findings

We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains.

Conclusions/Significance

Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease.  相似文献   

4.
Microtus montanus infected with Trypanosoma brucei gambiense for 16 and 21 days excreted significantly greater quantities of several aromatic amino acid catabolites when compared to uninfected control animals. Very large quantities of three aromatic alpha-keto acids (alpha-oxocarboxylic acids), phenylpyruvic acid, 4- hydroxyphenylpyruvic acid and indole-3-pyruvic acid, were excreted by infected animals. Increased excretion of indole-3-lactic acid and indole-3-acetic acid was also detected. Gas chromatographic-mass spectral analysis of the trimethylsilyl derivatives of phenylpyruvic acid, 4- hydroxyphenylpyruvic acid and indole-3-pyruvic acid confirms the identity of the aromatic alpha-keto acids elevated during infection. The marked alpha-keto aciduria indicates that a large disturbance exists in aromatic amino acid metabolism in this chronic animal model of African trypanosomiasis. The disturbance may contribute to the pathogenesis of the disease. The increased catabolite concentrations may also prove to be useful diagnostically and prognostically.  相似文献   

5.
Fifty-one strains of the genus Bifidobacterium have been found to accumulate indole-3-lactic acid in culture broth. The isolated metabolite was identified through mass and nuclear magnetic resonance spectroscopy. All the microorganisms tested, as resting cells, have been shown to be able to convert L-tryptophan into L-indole-3-lactic acid.  相似文献   

6.
Fifty-one strains of the genus Bifidobacterium have been found to accumulate indole-3-lactic acid in culture broth. The isolated metabolite was identified through mass and nuclear magnetic resonance spectroscopy. All the microorganisms tested, as resting cells, have been shown to be able to convert L-tryptophan into L-indole-3-lactic acid.  相似文献   

7.
Indolepyruvate decarboxylase, a key enzyme for indole-3-acetic acid biosynthesis, was found in extracts of Enterobacter cloacae. The enzyme catalyzes the decarboxylation of indole-3-pyruvic acid to yield indole-3-acetaldehyde and carbon dioxide. The enzyme was purified to apparent homogeneity from Escherichia coli cells harboring the genetic locus for this enzyme obtained from E. cloacae. The results of gel filtration experiments showed that indolepyruvate decarboxylase is a tetramer with an M(r) of 240,000. In the absence of thiamine pyrophosphate and Mg2+, the active tetramers dissociate into inactive monomers and dimers. However, the addition of thiamine pyrophosphate and Mg2+ to the inactive monomers and dimers results in the formation of active tetramers. These results indicate that the thiamine pyrophosphate-Mg2+ complex functions in the formation of the tetramer, which is the enzymatically active holoenzyme. The enzyme exhibited decarboxylase activity with indole-3-pyruvic acid and pyruvic acid as substrates, but no decarboxylase activity was apparent with L-tryptophan, indole-3-lactic acid, beta-phenylpyruvic acid, oxalic acid, oxaloacetic acid, and acetoacetic acid. The Km values for indole-3-pyruvic acid and pyruvic acid were 15 microM and 2.5 mM, respectively. These results indicate that indole-3-acetic acid biosynthesis in E. cloacae is mediated by indolepyruvate decarboxylase, which has a high specificity and affinity for indole-3-pyruvic acid.  相似文献   

8.
9.
Growth hormone (GH) and insulin-like growth factor (IGF) signaling regulates lifespan in mice. The modulating effects of genetic background gained much attention because it was shown that life-prolonging effects in Snell dwarf and GH receptor knockout vary between mouse strains. We previously reported that heterozygous IGF-1R inactivation (IGF-1R+/−) extends lifespan in female mice on 129/SvPas background, but it remained unclear whether this mutation produces a similar effect in other genetic backgrounds and which molecules possibly modify this effect. Here, we measured the life-prolonging effect of IGF-1R+/− mutation in C57BL/6J background and investigated the role of insulin/IGF signaling molecules in strain-dependent differences. We found significant lifespan extension in female IGF-1R+/− mutants on C57BL/6J background, but the effect was smaller than in 129/SvPas, suggesting strain-specific penetrance of longevity phenotypes. Comparing GH/IGF pathways between wild-type 129/SvPas and C57BL/6J mice, we found that circulating IGF-I and activation of IGF-1R, IRS-1, and IRS-2 were markedly elevated in 129/SvPas, while activation of IGF pathways was constitutively low in spontaneously long-lived C57BL/6J mice. Importantly, we demonstrated that loss of one IGF-1R allele diminished the level of activated IGF-1R and IRS more profoundly and triggered stronger endocrine feedback in 129/SvPas background than in C57BL/6J. We also revealed that acute oxidative stress entails robust IGF-1R pathway activation, which could account for the fact that IGF-1R+/− stress resistance phenotypes are fully penetrant in both backgrounds. Together, these results provide a possible explanation why IGF-1R+/− was less efficient in extending lifespan in C57BL/6J compared with 129/SvPas.  相似文献   

10.
Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain   总被引:20,自引:0,他引:20  
The 129 mouse is the most widely used strain in gene targeting experiments. However, numerous substrains exist with demonstrable physiological differences. In this study a set of simple sequence length polymorphisms (SSLPs) was used to determine the relatedness of selected 129 substrains. 129/SvJ was significantly different from the other 129 substrains and is more accurately classified as a recombinant congenic strain (129cX/Sv), being derived from 129/Sv and an unknown strain. This mixed genetic background could complicate gene targeting experiments by reducing homologous recombination efficiency when constructs and ES cells are not derived from the same 129 substrain. Additionally, discrepancies due to different genetic backgrounds may arise when comparing phenotypes of genes targeted in different 129-derived ES cell lines. Received: 2 December 1996 / Accepted: 10 February 1997  相似文献   

11.
Effect of retinoic acid in experimental diabetic nephropathy   总被引:21,自引:0,他引:21  
  相似文献   

12.
All cells have an intrinsic biophysical property related to their ability to undergo osmotically driven volume changes. This project is of fundamental importance to our understanding of the basic cryobiology of mouse spermatozoa. The objectives of this study were to determine the osmotic tolerance limits for (1) motility, (2) acrosome integrity, and (3) membrane integrity of mouse spermatozoa from multiple genetic backgrounds including: C57BL/6, BALB/c, FVB, C3H, 129/SVS2 hsd B6C3F1, CB6F1, and ICR. The maintenance of acrosomal and plasma membrane integrity was not affected by genetic background (p=0.13), however, there was an interaction between genetic background and osmolality. In addition, acrosome and plasma membrane integrity was highly correlated within each strain (p<0.01). In contrast to acrosome and plasma membrane integrity, the motility of spermatozoa from different genetic backgrounds fell sharply on both sides of isosmolality, both with and without return to isosmotic conditions. Exposure to hyposmotic conditions caused morphological changes in the spermatozoa, which inhibited motility. However, this morphological change was not reversible in all cases when returned to isosmotic conditions. The ability to maintain motility in an anisosmotic media was affected by genetic background, osmolality as well as the interaction between genetic background and osmolality (p<0.05). In conclusion, mice with different genetic backgrounds appear to have similar tolerance to osmotic changes in terms of sperm acrosome and plasma membrane integrity; however, the ability to maintain motility differs between genetic backgrounds.  相似文献   

13.
d-lactic acid is a versatile and important industrial chemical that can be applied in the synthesis of thermal-resistant poly-lactic acid. Biosynthesis of d-lactic acid can be achieved by a variety of microorganisms, including lactic acid bacteria, yeast, and fungi; however, the final product yield, optical purity, and the utilization of both glucose and xylose are restricted. Consequently, engineered microbial systems are essential to attain high titer, productivity, and complete utilization of sugars. Herein, we critically evaluate the promising wild-type microorganisms, as well as genetically modified microorganisms to produce enantiomerically pure d-lactic acid, particularly from renewable lignocellulosic biomass. In addition, innovative bioreactor operation, metabolic flux analysis, and recent genetic engineering methods for targeted microbial d-lactic acid synthesis will be discussed.  相似文献   

14.
Conjugated and unconjugated urinary levels of phenylacetic acid (PAA), m-hydroxyphenylacetic acid (m-HPA) and p-hydroxyphenylacetic acid have been determined for 24-h urine samples obtained from a single healthy male over a 28-day period. Gas chromatographic—electron-capture and mass spectrometric—integrated ion current techniques incorporating appropriate internal standards were used. The average urinary excretion values obtained were (in mg/24 h): PAA unconjugated 0.67, conjugated 96.6; m-HPA unconjugated 7.3, conjugated < 0.1; p-HPA unconjugated 22.4, conjugated < 1.2. Following the ingestion of appropriate deuterated amino acid precursors the expected urinary deuterated trace acids were identified and quantitated; in the case of deuterated phenylethylamine, m-HPA and p-HPA as well as PAA were identified and quantitated. This is the first evidence of phenylethylamine hydroxylation in the human. The longitudinal excretion of the trace acids was compared with that of the trace amines.  相似文献   

15.
Bile acid homeostasis is tightly maintained through interactions between the liver, intestine, and kidney. During cholestasis, the liver is incapable of properly clearing bile acids from the circulation, and alternative excretory pathways are utilized. In obstructive cholestasis, urinary elimination is often increased, and this pathway is further enhanced after bile duct ligation in mice that are genetically deficient in the heteromeric, basolateral organic solute transporter alpha-beta (Ostα-Ostβ). In this study, we examined renal and intestinal function in Ostα-deficient and wild-type mice in a model of bile acid overload. After 1% cholic acid feeding, Ostα-deficient mice had significantly lower serum ALT levels compared with wild-type controls, indicating partial protection from liver injury. Urinary clearance of bile acids, but not clearance of [(3)H]inulin, was significantly higher in cholic acid-fed Ostα-deficient mice compared with wild-type mice but was not sufficient to account for the protection. Fecal excretion of bile acids over the 5 days of cholic acid feeding was responsible for almost all of the bile acid loss in Ostα-deficient mice, suggesting that intestinal losses of bile acids accounted for the protection from liver injury. Thus fecal loss of bile acids after bile acid overload reduced the need for the kidney to filter and excrete the excess bile acids. In conclusion, Ostα-deficient mice efficiently eliminate excess bile acids via the feces. Inhibition of intestinal bile acid absorption might be an effective therapeutic target in early stages of cholestasis when bile acids are still excreted into bile.  相似文献   

16.
Strunk KE  Amann V  Threadgill DW 《Genetics》2004,167(4):1821-1832
The timing of lethality caused by homozygosity for a null allele of the epidermal growth factor receptor (Egfrtm1Mag) in mice is strongly dependent on genetic background. Initial attempts to genetically map background modifiers using Swiss-derived, outbred CD-1 mice were unsuccessful. To investigate the genetic architecture contributing to survival of Egfrtm1Mag homozygous embryos, the genetic variability segregating within the outbred population was partitioned by surveying viability of Egfrtm1Mag mutants using intercrosses between 129S6/SvEvTAC-Egfrtm1Mag and nine Swiss-derived, inbred strains: ALR/LtJ, ALS/LtJ, APN, APS, ICR/HaRos, NOD/LtJ, NON/LtJ, SJL/J, and SWR/J. The observations showed that these strains support varying levels of survival of Egfrtm1Mag homozygous embryos, suggesting that genetic heterogeneity within the CD-1 stock contributed to the original lack of Egfrtm1Mag modifier detection. Similar to the Swiss-derived intercrosses, nine congenic strains, derived from 129S6/SvEvTAC, AKR/J, APN, BALB/cJ, BTBR-T+ tf/tf, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ inbred backgrounds, also supported varying levels of survival of Egfrtm1Mag mutants. By intercrossing the congenic lines to create hybrid F1 embryos, different genetic backgrounds were found to have complementary modifiers. Analysis of the congenic lines argues against heterosis of outbred backgrounds contributing to Egfrtm1Mag phenotypic variability. A detailed analysis of the crosses suggests that modifiers function at three distinct stages of development. One class of modifiers supports survival of Egfrtm1Mag homozygous embryos to mid-gestation, another class supports development through the mid-gestation transition from yolk-sac to placental-derived nutrient sources, and a third class supports survival through later stages of gestation. Data from microarray analysis using RNA from wild-type and Egfrtm1Mag mutant placentas support the existence of extensive genetic heterogeneity and suggest that it can be molecularly partitioned. This method should be generally useful to partition heterogeneity contributing to other complex traits.  相似文献   

17.
The major urinary metabolite of nitrotyrosine is 3-nitro-4-hydroxyphenylacetic acid (3-Nitro-HPA). However, recent animal studies have shown that the majority of urinary 3-Nitro-HPA is derived from nitration of endogenous para-hydroxyphenylacetic acid (HPA), a metabolite of tyrosine. One potential site for the formation of 3-Nitro-HPA is the stomach, where nitrous acid is formed by the reaction of nitrite in saliva with gastric acid. The aim of this study was to determine whether there is pH-dependent nitration of salivary para-hydroxyphenylacetic acid or tyrosine, and the effects of dietary nitrate. Healthy volunteers (n = 18) ingested either a low or high nitrate diet, with and without the administration of omeprazole, a proton pump inhibitor. Urinary 3-Nitro-HPA excretion increased from 197 +/- 52 to 319 +/- 88 microg/day on switching from a low to a high nitrate diet (P < 0.05), and decreased (166 +/- 53 mug/day, P < 0.05) when gastric pH was increased by omeprazole. To determine whether 3-Nitro-HPA can be formed by nitration of para-hydroxyphenylacetic acid in the stomach, 500 microg of deuterated para-hydroxyphenylacetic acid was ingested with a high nitrate meal. This led to the excretion of both deuterated HPA and 3-Nitro-HPA in the urine, confirming that para-hydroxyphenylacetic acid is absorbed, and nitrated. Since omeprazole decreases the formation of 3-Nitro-HPA, presumably by decreasing the nitration of endogenous para-hydroxyphenylacetic acid present in saliva, and the observation that ingested deuterated para-hydroxyphenylacetic acid is nitrated and excreted, we conclude that endogenous para-hydroxyphenylacetic acid is nitrated in the stomach, absorbed, and excreted as 3-Nitro-HPA.  相似文献   

18.
The chloramphenicol acetyltransferase gene under the control of the late E2A promoter of adenovirus type 2 (Ad2) was introduced as transgene into the B6D2F1 mouse strain with mixed genetic background and became extensively de novo methylated. The methylation of this pAd2E2AL-CAT (7-1A) transgene was regulated in a strain-specific manner apparently depending on the site of integration. Transmission of the 7-1A transgene into an inbred DBA/2, 129/sv, or FVB/N genetic background led to a significant loss of methylation in the transgene, whereas C57BL/6, CB20, and Balb/c backgrounds favored the de novo methylation in very specific patterns. The newly established patterns of de novo methylation were transmitted to the offspring and remained stable for many generations, regardless of the heterozygosity of strain-specific DNA sequences present in these mouse strains. Segregation analyses showed a non-mendelian transmission of methylation phenotypes and suggested the involvement of dominant modifiers of methylation. The genotype-specific modifications of the transgene were followed for 11 backcross generations. These observations reflect an evolutionarily conserved mechanism directed against foreign, e.g. viral or bacterial, DNA at least in the chromosomal location of the 7-1A transgene. In seven additional mouse lines carrying the same transgene in different chromosomal locations, strain-specific alterations of methylation patterns were not observed.  相似文献   

19.
Indole-3-lactic acid (ILA) is a naturally occurring indole derivative, preferably detected in soil bacteria and fungi and only in low amounts in plants. T-DNA gene 5 of Agrobacterium tumefaciens was found to be involved in the synthesis of ILA in transformed plant tissues, but the physiologic relevance for ILA production in plants is unclear. The related molecular structure of ILA to the natural auxin indole-3-acetic acid (IAA) makes ILA a good candidate for an auxin analogue. We examined the possible auxin activity of ILA on elongation, proliferation, and differentiation in Pisum sativum L. Results presented in this paper indicate that there are no or only weak effects of ILA toward the activity of auxins when used in the physiologic concentration range. Furthermore, no antagonistic effects of ILA were found. Biochemical analysis using the equilibrium dialysis binding system resulted in no high affinity ILA binding to an enriched protein fraction containing auxin-binding protein (ABP44), whereas 1-naphthaleneacetic acid exhibited high affinity auxin binding.Abbreviations IAA indoleacetic acid - ILA indole-3-lactic acid - T-DNA transferred DNA - ABP auxin-binding protein - NAA naphthaleneacetic acid - MS Murashige and Skoog - MES 2-(N-morpholino)ethanesulfonic acid - BAP 6-benzylaminopurine  相似文献   

20.
The sperm mitochondria-associated cysteine-rich protein (SMCP) is a cysteine- and proline-rich structural protein that is closely associated with the keratinous capsules of sperm mitochondria in the mitochondrial sheath surrounding the outer dense fibers and axoneme. To investigate the function of SMCP, we generated mice with a targeted disruption of the gene Smcp by homologous recombination. Homozygous mutant males on a mixed genetic background (C57BL/6J x 129/Sv) are fully fertile, while they are infertile on the 129/Sv background, although spermatogenesis and mating are normal. Homozygous Smcp(-/-) female mice are fertile on both genetic backgrounds. Electron microscopical examination demonstrated normal structures of sperm head, mitochondria, and tail. In vivo experiments with sperm of Smcp(-/-) 129/Sv mice revealed that the migration of spermatozoa from the uterus into the oviduct is reduced. This result is supported by the observation that sperm motility as determined by the computer-assisted semen analysis system (CASA) is significantly affected as compared to wild-type spermatozoa. In vitro fertilization assays showed that Smcp-deficient spermatozoa are able to bind to the oocyte but that the number of fertilized eggs is reduced by more than threefold relative to the wild-type control. However, removal of the zona pellucida resulted in an unaffected sperm-egg fusion which was monitored by the presence of pronuclei and generation of blastocyts. These results indicate that the infertility of the male Smcp(-/-) mice on the 129/Sv background is due to reduced motility of the spermatozoa and decreased capability of the spermatozoa to penetrate oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号