首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of carbamoylphosphate synthetase (CPSase) and aspartate carbamoyltransferase (ACTase), the first two enzymes of the pyrimidine biosynthetic pathway, in chloroplasts was investigated. In dark-grown radish (Raphanus sativus) seedlings, light induced a prominent increase in CPSase activity, but had little effect on ACTase activity. Both enzymes were found in chloroplasts isolated from radish cotyledons and leaves of spinach (Spinacia oleracea), soybean (Glycine max), and corn (Zea mays). The higher activity of ACTase relative to CPSase is discussed in relation to the instability of carbamoylphosphate, the product of the CPSase, and to the control of pyrimidine synthesis. Based on these results, the function of CPSase and ACTase in chloroplasts is discussed.  相似文献   

2.
The enzymic capacities for ammonia assimilation into amino acids have been investigated in chloroplasts from the siphonous green alga Caulerpa simpliciuscula (Turner) C. Ag. The results show that these chloroplasts differ from those of higher plants in having present simultaneously the enzymic capacities to permit assimilation of ammonia by two pathways. Glutamine synthetase (EC 6.3.1.2) activity at levels up to 4 μmoles per mg chlorophyll per hour were found in soluble extracts of the chloroplasts. Glutamine(amide):α-ketoglutarate aminotransferase (oxidoreductase ferredoxin) (EC 1.4.7.1) activity at levels up to 1.4 μmoles per mg chlorophyll per hour was detected by incubation of photosynthetically active chloroplasts either in light or with reduced ferredoxin. Together these enzymes provide the capacity for the conventional pathway of ammonium assimilation in chloroplasts via glutamine. A similar level of a glutamate dehydrogenase with an unusually low Km for ammonia which has been described previously in these chloroplasts provides the second potential pathway.  相似文献   

3.
Both acyl-CoA synthetase and acyl-CoA thioesterase activities are present in chloroplast envelope membranes. The functions of these enzymes in lipid metabolism remains unresolved, although the synthetase has been proposed to be involved in either plastid galactolipid synthesis or the export of plastid-synthesized fatty acids to the cytoplasm. We have examined the locations of both enzymes within the two envelope membranes of pea (Pisum sativum var Laxton's Progress No. 9) chloroplasts. Inner and outer envelope membranes were purified from unfractionated envelope preparations by linear density sucrose gradient centrifugation. Acyl-CoA synthetase was located in the outer envelope membrane while acyl-CoA thioesterase was located in the inner envelope membrane. Thus, it seems unlikely that the synthetase is directly involved in galactolipid assembly. Instead, its localization supports the hypothesis that it functions in the transport of plastid-synthesized fatty acids to the endoplasmic reticulum.  相似文献   

4.
Shigeru Itoh  Shinji Morita 《BBA》1982,682(3):413-419
(1) The relation between the membrane potential and phosphorylation was studied in chloroplasts rapidly prepared from illuminated spinach leaves (light chloroplasts) and from dark-adapted leaves (dark chloroplasts). Light chloroplasts had a higher ATP hydrolysis activity than dark chloroplasts. (2) In the presence of ADP or ATP, a rapidly decaying phase of the field-indicating 518 nm absorbance change with a half-time of 15 ms became apparent in addition to the slow phase with a half-time of more than 300 ms in either type of chloroplast. Under these conditions, light chloroplasts showed a larger rapid phase than dark chloroplasts. (3) The rapid phase was suppressed by dicyclohexylcarbodiimide and was assumed to reflect the dissipation of membrane potential due to proton movements inside the CF1-CF0 ATP synthetase. (4) A model for the proton movement in ATP synthetase is proposed.  相似文献   

5.
Monochromatic light microscopy at 435 mµ shows in Euglena gracilis, the distribution of chlorophyll and the general orientation and geometry of chloroplasts in vivo. In addition it discloses, in swelling chloroplasts, a lamellar pigmented structure. Changes in this structure are observed in extruded swollen chloroplasts treated with lipolytic or proteolytic enzymes. Lipolytic enzymes produce an increase in the number of visible lamellae while proteolytic enzymes disrupt the lamellar array. Correlation of chloroplast swelling behavior and the effects of enzymatic degradation with current electron microscope observations support the following: (1) the pigment lamellae observed in vivo consist of component laminae; (2) the lamellae are separated by sites of swelling; and (3) the integrity of the lamellar structure is primarily dependent upon the intact state of the protein.  相似文献   

6.
《Plant science》1986,43(3):185-191
Glutathione synthetase (γ-l-glutamyl-l-cysteine:glycine ligase [ADP-forming], EC 6.3.2.3) was partially-purified (100-fold) from spinach (Spinacia oleracea) leaves and its properties determined. At least part of the enzyme activity is localized in chloroplasts. The properties of the enzyme suggest that GSH synthesis would be facilitated at the pH and Mg2+ concentration in the stroma of illuminated chloroplasts, but glutathione synthetase does not appear to be ‘light-activated’ in isolated type A chloroplasts.  相似文献   

7.
Development of enzymes in the cotyledons of watermelon seedlings   总被引:19,自引:13,他引:6       下载免费PDF全文
Changes in hypocotyl length, cotyledon weight, lipid content, chlorophyll content, and capacity for photosynthesis have been described in seedlings of Citrullus vulgaris, Schrad. (watermelon) growing at 30 C under various light treatments. Corresponding changes in the levels of 19 enzymes in the cotyledons are described, with particular emphasis on enzymes of microbodies, since during normal greening, enzymes of the glyoxysomes are lost and those of leaf peroxisomes appear. In complete darkness enzymes of the glyoxysomes reach a peak at 4 days and decline as the fat is depleted. Enzymes of mitochondria and of glycolytic pathways also peak at 4 to 5 days and either remain unchanged or decline to a lesser extent. Exposure to light at 4 days, when the cotyledons emerge, results in a selectively greater destruction of enzymes of the glyoxylate cycle; chlorophyll synthesis and capacity for photosynthesis increase in parallel, and there is a striking increase in the activities of chloroplast enzymes and in those of the leaf peroxisomes, hydroxypyruvate reductase and glycolate oxidase. The reciprocal changes in enzymes of the glyoxysomes and of leaf peroxisomes can be temporally dissociated, since even after 10 days in darkness, when malate synthetase and isocitrate lyase have reached very low levels, hydroxypyruvate reductase and glycolate oxidase increase strikingly on exposure to light and the cotyledons become photosynthetic. Furthermore, the parallel development of enzymes of leaf peroxisomes and functional chloroplasts is not immutable, since hydroxypyruvate reductase and glycolate oxidase activity can be elicited in darkness following a 5-minute exposure to light at day 4 while chlorophyll does not develop under these conditions.  相似文献   

8.
Huber SC 《Plant physiology》1978,62(3):321-325
Magnesium was most inhibitory to photosynthetic reactions by intact chloroplasts when the magnesium was added in the dark before illumination. Two millimolar MgCl2, added in the dark, inhibited CO2-dependent O2 evolution by Hordeum vulgare L. and Spinacia oleracea L. (C3 plants) chloroplasts 70 to 100% and inhibited (pyruvate + oxaloacetate)-dependent O2 evolution by Digitaria sanguinalis L. (C4 plant) mesophyll chloroplasts from 80 to 100%. When Mg2+ was added in the light, O2 evolution was reduced only slightly. O2 evolution in the presence of phosphoglycerate was less sensitive to Mg2+ inhibition than was CO2-dependent O2 evolution.

Magnesium prevented the light activation of several photosynthetic enzymes. Two millimolar Mg2+ blocked the light activation of NADP-malate dehydrogenase in D. sanguinalis mesophyll chloroplasts, and the light activation of phosphoribulokinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and fructose 1,6-diphosphatase in barley chloroplasts. The results suggest that Mg2+ inhibits chloroplast photosynthesis by preventing the light activation of certain enzymes.

  相似文献   

9.
Soybean (Glycine max) nodules formed by inoculation with either an effective strain or an ineffective (noninvasive, nodule-forming) strain of Bradyrhizobium japonicum were assayed for changes in developmental patterns of carbon metabolic enzymes of the plant nodule cells. Of the enzyme activities measured, only sucrose synthase, glutamine synthetase, and alcohol dehydrogenase were altered in the ineffective nodules relative to the effective nodules. Sucrose synthase and glutamine synthetase activities were greatly reduced, whereas alcohol dehydrogenase activity was elevated. Dark-induced senescence severely affected sucrose synthase but had little, if any, effect on the other enzymes measured. The developmental patterns of the anaerobically induced enzymes, aldolase and alcohol dehydrogenase, were different from those expected, implying that their development is not regulated solely by oxygen deprivation. However, anaerobic treatment of nodules resulted in responses similar to those enzymes in maize. The developmental profiles of the carbon metabolic enzymes suggest that carbohydrates are metabolized via the sucrose synthase and pentose phosphate pathways. This route of carbon metabolism, compared to glycolysis, would reduce the requirement of ATP for carbohydrate catabolism, generate NADPH for biosynthetic reactions, and provide intermediates for plant secondary metabolism.  相似文献   

10.
Irradiation of the gametophytes of Pteridium aquilinum with blue light led to a nearly 5-fold increase in the amino acid-incorporating activity of isolated chloroplasts. The blue light effect was not due to increased synthesis of ATP or other energy donors by the chloroplasts but was probably related to an increased production of chlorophyll and photosynthetic enzymes.  相似文献   

11.
Acyl coenzyme A (CoA) synthetase (ACS) enzymes catalyze the activation of free fatty acids (FAs) to CoA esters by a two-step thioesterification reaction. Activated FAs participate in a variety of anabolic and catabolic lipid metabolic pathways, including de novo complex lipid biosynthesis, FA β-oxidation, and lipid membrane remodeling. Analysis of the genome sequence of the filamentous fungus Neurospora crassa identified seven putative fatty ACSs (ACS-1 through ACS-7). ACS-3 was found to be the major activator for exogenous FAs for anabolic lipid metabolic pathways, and consistent with this finding, ACS-3 localized to the endoplasmic reticulum, plasma membrane, and septa. Double-mutant analyses confirmed partial functional redundancy of ACS-2 and ACS-3. ACS-5 was determined to function in siderophore biosynthesis, indicating alternative functions for ACS enzymes in addition to fatty acid metabolism. The N. crassa ACSs involved in activation of FAs for catabolism were not specifically defined, presumably due to functional redundancy of several of ACSs for catabolism of exogenous FAs.  相似文献   

12.
Addition of NH4+ to the photosynthesizing leaf cells of Dolichos lab lab L. var. Lignosis Prain and leaf discs of Vigna sinensis L. savi ex Hassk caused a significant increase in the flow of photosynthetic carbon toward amino acids with a concomitant decrease toward sugars without affecting the over-all photosynthetic rate. Similar diversion of photosynthetic carbon away from sugars was also observed in the photosynthesizing isolated chloroplasts of V. sinensis, but the latter differed in that they accumulated organic acids rather than amino acids. In an effort to understand the mechanism of NH4+-mediated regulation, the specific and total activities of NAD(P)-glutamate dehydrogenase, glutamine synthetase, pyruvate kinase, alkaline fructose 1,6-bisphosphatase, and NAD(P)-glyceraldehyde-3-phosphate dehydrogenase of the cells of D. lab lab were checked but none was affected by the added ammonium salts even after prolonged incubation. At certain concentrations, ammonium ions abolished the light activation of NADP-glyceraldehyde-3-phosphate dehydrogenase and alkaline fructose 1,6-bisphosphatase in isolated chloroplasts from dark-adapted Vigna leaves without interfering with the basal dark activity of these enzymes. Based on these observations, a possible mechanism of action of NH4+ in regulating the photosynthetic carbon flow is postulated.  相似文献   

13.
Aminoacyl-tRNA synthetases (ARSs) are key enzymes involved in protein translation, and both cytosolic and organellar forms are present in the genomes of eukaryotes. In this study, we investigated cellular effects of depletion of organellar forms of ARS using virus-induced gene silencing (VIGS) in Nicotiana benthamiana. VIGS of NbERS and NbSRS, which encode organellar GluRS and SerRS, respectively, resulted in a severe leaf-yellowing phenotype. The NbERS and NbSRS genes were ubiquitously expressed in plant tissues, and induced in response to light. Green fluorescent protein (GFP) fusion proteins of the full-length glutamyl-tRNA synthetase (ERS) and seryl-tRNA synthetase (SRS) of Arabidopsis and GFP fusions to the N-terminal extension of these proteins were all dualtargeted to chloroplasts and mitochondria. At the cell level, depletion of NbERS and NbSRS resulted in dramatically reduced numbers of chloroplasts with reduced sizes and chlorophyll content. The numbers and/or physiology of mitochondria were also severely affected. The abnormal chloroplasts lacked most of the thylakoid membranes and appeared to be degenerating, whereas some of them showed doublet morphology, indicating defective chloroplast division. Pulse-field gel electrophoresis analyses demonstrated that chloroplast DNA in subgenomic sizes is the predominant form in the abnormal chloroplasts. Interestingly, despite severe abnormalities in chloroplasts and mitochondria, expression of many nuclear genes encoding chloroplastor mitochondria-targeted proteins, and chlorophyll biosynthesis genes remained unchanged in the ERS and SRS VIGS lines. This is the first report to analyze the effect of ARS disruption on organelle development in plants.  相似文献   

14.
The growth of the mung bean (Vigna radiata) seedling is accompanied by the biosynthesis and accumulation of the endopeptidase vicilin peptidohydrolase and the catabolism of the reserve proteins in the cotyledons. If the axis is removed from the dry seeds and the cotyledons incubated on moist sand the accumulation of vicilin peptidohydrolase is reduced by 77% and the catabolism of reserve proteins slowed to 25% of the rate in intact seedlings. The cotyledons and the cotyledon exudate are rich in asparagine and this amino acid accounts for more than half of the reduced nitrogen exported from the cotyledons. Glutamine synthetase and asparagine synthetase, two key enzymes in the pathway of asparagine synthesis, are under temporal control in the cotyledons. Their activities increase 3.5- and 10-fold, respectively, then decline again. These increases in enzyme activity occur to the same extent in excised cotyledons and are prevented when the cotyledons are incubated in 5 micromolar cycloheximide. The results indicate that the axis may control certain key metabolic events in the cotyledons, such as the synthesis of vicilin peptidohydrolase, while many other anabolic activities may not depend on a growing axis.  相似文献   

15.
The specific activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were determined in intact protoplasts and intact chloroplasts from Chlamydomonas reinhardtii. After correction for contamination, the data were used to calculate the portion of each enzyme in the algal chloroplast. The chloroplast of C. reinhardtii contained all enzyme activities for nitrogen assimilation, except nitrate reductase, which could not be detected in this organelle. Glutamate synthase (NADH- and ferredoxin-dependent) and glutamate dehydrogenase were located exclusively in the chloroplast, while for nitrite reductase and glutamine synthetase an extraplastidic activity of about 20 and 60%, respectively, was measured. Cells grown on ammonium, instead of nitrate as nitrogen source, had a higher total cellular activity of the NADH-dependent glutamate synthase (+95%) and glutamate dehydrogenase (+33%) but less activity of glutamine synthetase (−10%). No activity of nitrate reductase could be detected in ammonium-grown cells. The distribution of nitrogen-assimilating enzymes among the chloroplast and the rest of the cell did not differ significantly between nitrate-grown and ammonium-grown cells. Only the plastidic portion of the glutamine synthetase increased to about 80% in cells grown on ammonium (compared to about 40% in cells grown on nitrate).  相似文献   

16.
We have visualized directly the distribution of the cytochrome b6/f and coupling factor ATP synthetase complexes in thylakoid membranes of embedded, thin-sectioned, intact chloroplasts by using rabbit antibodies directed against each complex, followed by ferritin-conjugated goat anti- (rabbit immunoglobulin G) antibodies. The labeling patterns indicate that in spinach (Spinacia oleracea) chloroplasts the cytochrome b6/f complex is distributed laterally throughout both stacked grana and unstacked stroma membrane regions, whereas the coupling factor ATP synthetase complex is found exclusively in stroma thylakoids and in the marginal and end membranes of grana.  相似文献   

17.
Samuel Roulin  Urs Feller 《Planta》1998,205(2):297-304
Intact chloroplasts were isolated from mature pea (Pisum sativum L.) leaves in order to study the degradation of several stromal proteins in organello. Changes in the abundances of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), glutamine synthetase (EC 6.3.1.2) and ferredoxin-dependent glutamine:α-ketoglutarate aminotransferase (glutamate synthase; EC 1.4.7.1) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Coomassie-staining of the gels or immunoblotting using specific antibodies for the different enzymes. Degradation of several stromal proteins was strongly stimulated when intact chloroplasts were incubated in the light in the presence of dithiothreitol. Since free radicals may artificially accumulate in the chloroplast under such conditions and interfere with the stability of stromal proteins, the general relevance of these processes remains questionable. In the absence of light, proteolysis proceeded slowly in isolated chloroplasts and was not stimulated by dithiothreitol. Inhibition by ethylenediaminetetraacetic acid (EDTA), 1,10-phenanthroline or excess zinc ions as well as the requirement for divalent cations suggested that a zinc-containing metalloprotease participated in this process. Furthermore, light-independent degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase was enhanced in chloroplasts isolated from leaves in which senescence was accelerated by nitrogen starvation. Our results indicate that light-independent stromal protein degradation in intact chloroplasts may be analogous to proteolysis that occurs in intact leaves during senescence. Received: 3 July 1997 / Accepted: 15 October 1997  相似文献   

18.
Activities of Calvin-Benson cycle enzymes were found in protoplasts of guard cells from Vicia faba L. The activities of NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPD) and ribulose-1,5-bisphosphate carboxylase (RuBPC) were 2670 and 52 micromoles per milligrams chlorophyll per hour, respectively. Activities of NADP-GAPD and RuBPC in guard cells were increased by red light illumination, and the light activations were inhibited completely by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. Enzymes related to the Calvin-Benson cycle such as 3-phosphoglycerate kinase (PGAK), triose phosphate (TP) isomerase, and fructose-1,6-bisphosphatase (FBPase) were shown to be present in guard-cell chloroplasts. From these results, we conclude that the photosynthetic carbon reduction pathway is present in guard-cell chloroplasts of Vicia faba. We compared these enzyme activities in guard cells with those in mesophyll cells. The activities of NADP-GAPD and PGAK were more than several-fold higher and that of TP isomerase was much higher in guard-cell chloroplasts than in mesophyll chloroplasts. In contrast, activities of RuBPC and FBPase were estimated to be roughly half of those in mesophyll chloroplasts. High activities of PGAK, NAD-GAPD, and TP isomerase were found in fractions enriched in cytosol of guard cells. Illumination of guard-cell protoplasts with red light increased the cellular ATP/ADP ratio from 5 to 14. These results support the interpretation that guard cells utilize a shuttle system (e.g. phosphoglycerate [PGA]/dihydroxyacetone phosphate [DHAP] shuttle) for an indirect transfer of ATP and reducing equivalents from chloroplasts to the cytosol.  相似文献   

19.
Changes in activities of photosynthetic enzymes and photochemical processes were followed with aging of vegetative and flag leaves of wheat (Triticum aestivum L. cv Roy). Activities of stromal enzymes began to decline prior to photochemical activities. In general, total soluble protein and the activities of ribulose-1,5-bisphosphate carboxylase and NADP-triose-phosphate dehydrogenase declined in parallel and at an earlier age than leaf chlorophyll (Chl), leaf photosynthesis, and photosynthetic electron transport activity. Leaves appeared to lose whole chloroplasts as opposed to a general degradation of all chloroplasts based on three lines of evidence: (a) electron transport activity calculated on an area basis declined much earlier than the same data expressed on a Chl basis; (b) Chl content per chloroplast was similar for mature and senescent tissue; and (c) the absorbance at 550 nanometers (light scattering) per unit of Chl remained essentially constant until the end of senescence. Chloroplasts did, however, undergo some modifications before they were lost (e.g. loss of stromal enzyme activities), but the reduction in leaf photosynthesis was apparently caused by a loss of whole chloroplasts.  相似文献   

20.
Plant cells are known to elongate exogenously provided fatty acid (FA), but the subcellular sites and mechanisms for this process are not currently understood. When Arabidopsis leaves were incubated with 14C-FAs with or=20 carbons) but not synthesis of 14C-unsaturated 18-carbon or 16-carbon FAs. Isolated pea chloroplasts were also able to elongate 14C-FAs (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号